Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-30T07:36:59.866Z Has data issue: false hasContentIssue false

Engineering semiconducting polymers for efficient charge transport

Published online by Cambridge University Press:  26 June 2015

Scott Himmelberger
Affiliation:
Materials Science and Engineering, Stanford University, Stanford, California 94305
Alberto Salleo*
Affiliation:
Materials Science and Engineering, Stanford University, Stanford, California 94305
*
Address all correspondence to Alberto Salleo at[email protected]
Get access

Abstract

Electronic performance in semiconducting polymers has improved dramatically in recent years owing to a host of novel materials and processing techniques. Our understanding of the factors governing charge transport in these materials has also been enhanced through advancements in both experimental and computational techniques, with disorder appearing to play a central role. In this prospective, we propose that disorder is an inextricable aspect of polymer morphology which need not be highly detrimental to charge transport if it is embraced and planned for. We discuss emerging guidelines for the synthesis of polymers which are resilient to disorder and present our vision for how future advances in processing and molecular design will provide a path toward further increases in charge-carrier mobility.

Type
Polymers/Soft Matter Prospective Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chen, C.-C., Chang, W.-H., Yoshimura, K., Ohya, K., You, J., Gao, J., Hong, Z., and Yang, Y.: An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%. Adv. Mater. 26, 56705677 (2014).Google Scholar
2.Knopfmacher, O., Hammock, M.L., Appleton, A.L., Schwartz, G., Mei, J., Lei, T., Pei, J., and Bao, Z.: Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Commun. 5, (2014).Google Scholar
3.Kaltenbrunner, M., Sekitani, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., Drack, M., Schwödiauer, R., Graz, I., Bauer-Gogonea, S., Bauer, S., and Someya, T.: An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458463 (2013).Google Scholar
4.White, M.S., Kaltenbrunner, M., Głowacki, E.D., Gutnichenko, K., Kettlgruber, G., Graz, I., Aazou, S., Ulbricht, C., Egbe, D.A.M., Miron, M.C., Major, Z., Scharber, M.C., Sekitani, T., Someya, T., Bauer, S., and Sariciftci, N.S.: Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 7, 811816 (2013).Google Scholar
5.Yun, H.-J., Kang, S.-J., Xu, Y., Kim, S.O., Kim, Y.-H., Noh, Y.-Y., and Kwon, S.-K.: Dramatic inversion of charge polarity in diketopyrrolopyrrole-based organic field-effect transistors via a simple nitrile group substitution. Adv. Mater. 26, 73007307 (2014).CrossRefGoogle Scholar
6.Kim, G., Kang, S.-J., Dutta, G.K., Han, Y.-K., Shin, T.J., Noh, Y.-Y., and Yang, C.: A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm2/Vs that substantially exceeds benchmark values for amorphous silicon semiconductors. J. Am. Chem. Soc. 136, 94779483 (2014).Google Scholar
7.Kang, I., Yun, H.-J., Chung, D.S., Kwon, S.-K., and Kim, Y.-H.: Record high hole mobility in polymer semiconductors via side-chain engineering. J. Am. Chem. Soc. 135, 1489614899 (2013).Google Scholar
8.Lee, J., Han, A.-R., Yu, H., Shin, T.J., Yang, C., and Oh, J.H.: Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering. J. Am. Chem. Soc. 135, 95409547 (2013).CrossRefGoogle ScholarPubMed
9.Li, J., Zhao, Y., Tan, H.S., Guo, Y., Di, C.-A., Yu, G., Liu, Y., Lin, M., Lim, S.H., Zhou, Y., Su, H., and Ong, B.S.: A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci. Rep. 2 (2012).Google Scholar
10.Luo, C., Kyaw, A.K.K., Perez, L.A., Patel, S., Wang, M., Grimm, B., Bazan, G.C., Kramer, E.J., and Heeger, A.J.: General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility. Nano Lett. 14, 27642771 (2014).CrossRefGoogle ScholarPubMed
11.Tsumura, A., Koezuka, H., and Ando, T.: Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl. Phys. Lett. 49, 12101212 (1986).Google Scholar
12.Dong, H., Fu, X., Liu, J., Wang, Z., and Hu, W.: 25th anniversary article: key points for high-mobility organic field-effect transistors. Adv. Mater. 25, 61586183 (2013).Google Scholar
13.Bao, Z., Dodabalapur, A., and Lovinger, A.J.: Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl. Phys. Lett. 69, 41084110 (1996).Google Scholar
14.McCulloch, I., Heeney, M., Bailey, C., Genevicius, K., MacDonald, I., Shkunov, M., Sparrowe, D., Tierney, S., Wagner, R., Zhang, W., Chabinyc, M.L., Kline, R.J., McGehee, M.D., and Toney, M.F.: Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328333 (2006).Google Scholar
15.Tseng, H.-R., Phan, H., Luo, C., Wang, M., Perez, L.A., Patel, S.N., Ying, L., Kramer, E.J., Nguyen, T.-Q., Bazan, G.C., and Heeger, A.J.: High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers. Adv. Mater. 26, 29932998 (2014).Google Scholar
16.Mei, J., Kim, D.H., Ayzner, A.L., Toney, M.F., and Bao, Z.: Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J. Am. Chem. Soc. 133, 2013020133 (2011).CrossRefGoogle ScholarPubMed
17.Yan, H., Chen, Z., Zheng, Y., Newman, C., Quinn, J.R., Dötz, F., Kastler, M., and Facchetti, A.: A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679686 (2009).Google Scholar
18.Li, H., Kim, F.S., Ren, G., and Jenekhe, S.A.: High-mobility n-type conjugated polymers based on electron-deficient tetraazabenzodifluoranthene diimide for organic electronics. J. Am. Chem. Soc. 135, 1492014923 (2013).CrossRefGoogle ScholarPubMed
19.Venkateshvaran, D., Nikolka, M., Sadhanala, A., Lemaur, V., Zelazny, M., Kepa, M., Hurhangee, M., Kronemeijer, A.J., Pecunia, V., Nasrallah, I., Romanov, I., Broch, K., McCulloch, I., Emin, D., Olivier, Y., Cornil, J., Beljonne, D., and Sirringhaus, H.: Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384388 (2014).CrossRefGoogle ScholarPubMed
20.Sirringhaus, H.: 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26, 13191335 (2014).Google Scholar
21.Nielsen, C.B., Turbiez, M., and McCulloch, I.: Recent advances in the development of semiconducting DPP-containing polymers for transistor applications. Adv. Mater. 25, 18591880 (2013).Google Scholar
22.Liu, T. and Troisi, A.: Understanding the microscopic origin of the very high charge mobility in PBTTT: tolerance of thermal disorder. Adv. Funct. Mater. 24, 925933 (2014).Google Scholar
23.Salleo, A., Chabinyc, M.L., Yang, M.S., and Street, R.A.: Polymer thin-film transistors with chemically modified dielectric interfaces. Appl. Phys. Lett. 81, 43834385 (2002).CrossRefGoogle Scholar
24.Jimison, L.H., Himmelberger, S., Duong, D.T., Rivnay, J., Toney, M.F., and Salleo, A.: Vertical confinement and interface effects on the microstructure and charge transport of P3HT thin films. J. Polym. Sci. B: Polym. Phys. 51, 611620 (2013).Google Scholar
25.Kline, R.J., McGehee, M.D., and Toney, M.F.: Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nat. Mater. 5, 222228 (2006).CrossRefGoogle Scholar
26.Koch, F.P.V., Rivnay, J., Foster, S., Müller, C., Downing, J.M., Buchaca-Domingo, E., Westacott, P., Yu, L., Yuan, M., Baklar, M., Fei, Z., Luscombe, C., McLachlan, M.A., Heeney, M., Rumbles, G., Silva, C., Salleo, A., Nelson, J., Smith, P., and Stingelin, N.: The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study. Prog. Polym. Sci. 38, 19781989 (2013).Google Scholar
27.Himmelberger, S., Vandewal, K., Fei, Z., Heeney, M., and Salleo, A.: Role of molecular weight distribution on charge transport in semiconducting polymers. Macromolecules 47, 71517157 (2014).Google Scholar
28.Zen, A., Pflaum, J., Hirschmann, S., Zhuang, W., Jaiser, F., Asawapirom, U., Rabe, J.P., Scherf, U., and Neher, D.: Effect of molecular weight and annealing of poly(3-hexylthiophene)s on the performance of organic field-effect transistors. Adv. Funct. Mater. 14, 757764 (2004).CrossRefGoogle Scholar
29.Kline, R.J., McGehee, M.D., Kadnikova, E.N., Liu, J., and Fréchet, J.M.J.: Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv. Mater. 15, 15191522 (2003).Google Scholar
30.Li, W., Yang, L., Tumbleston, J.R., Yan, L., Ade, H., and You, W.: Controlling molecular weight of a high efficiency donor–acceptor conjugated polymer and understanding its significant impact on photovoltaic properties. Adv. Mater. 26, 44564462 (2014).CrossRefGoogle ScholarPubMed
31.Noriega, R., Rivnay, J., Vandewal, K., Koch, F.P.V., Stingelin, N., Smith, P., Toney, M.F., and Salleo, A.: A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 10381044 (2013).CrossRefGoogle ScholarPubMed
32.Duong, D.T., Toney, M.F., and Salleo, A.: Role of confinement and aggregation in charge transport in semicrystalline polythiophene thin films. Phys. Rev. . 86, 205205 (2012).Google Scholar
33.Devižis, A., Serbenta, A., Meerholz, K., Hertel, D., and Gulbinas, V.: Ultrafast dynamics of carrier mobility in a conjugated polymer probed at molecular and microscopic length scales. Phys. Rev. Lett. 103, 027404 (2009).Google Scholar
34.Devizis, A., Meerholz, K., Hertel, D., and Gulbinas, V.: Ultrafast charge carrier mobility dynamics in poly(spirobifluorene-co-benzothiadiazole): influence of temperature on initial transport. Phys. Rev. B 82, 155204 (2010).Google Scholar
35.Devižis, A., Meerholz, K., Hertel, D., and Gulbinas, V.: Hierarchical charge carrier motion in conjugated polymers. Chem. Phys. Lett. 498, 302306 (2010).Google Scholar
36.Fornari, R.P. and Troisi, A.: Theory of charge hopping along a disordered polymer chain. Phys. Chem. Chem. Phys. 16, 999710007 (2014).CrossRefGoogle ScholarPubMed
37.Qin, T. and Troisi, A.: Relation between structure and electronic properties of amorphous MEH–PPV polymers. J. Am. Chem. Soc. 135, 1124711256 (2013).CrossRefGoogle ScholarPubMed
38.McMahon, D.P., Cheung, D.L., Goris, L., Dacuña, J., Salleo, A., Troisi:, A.Relation between microstructure and charge transport in polymers of different regioregularity. J. Phys. Chem. C 115, 1938619393 (2011).Google Scholar
39.Noriega, R., Salleo, A., and Spakowitz, A.J.: Chain conformations dictate multiscale charge transport phenomena in disordered semiconducting polymers. Proc. Natl. Acad. Sci. USA 110, 1631516320 (2013).Google Scholar
40.Laquai, F., Wegner, G., and Bässler, H.: What determines the mobility of charge carriers in conjugated polymers? Phil. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 365, 14731487 (2007).Google Scholar
41.Scharsich, C., Lohwasser, R.H., Sommer, M., Asawapirom, U., Scherf, U., Thelakkat, M., Neher, D., and Köhler, A.: Control of aggregate formation in poly(3-hexylthiophene) by solvent, molecular weight, and synthetic method. J. Polym. Sci. B: Polym. Phys. 50, 442453 (2012).Google Scholar
42.Pingel, P., Zen, A., Abellón, R.D., Grozema, F.C., Siebbeles, L.D.A., and Neher, D.: Temperature-resolved local and macroscopic charge carrier transport in thin P3HT layers. Adv. Funct. Mater. 20, 22862295 (2010).Google Scholar
43.Bolsée, J.-C., Oosterbaan, W.D., Lutsen, L., Vanderzande, D., and Manca, J.: The importance of bridging points for charge transport in webs of conjugated polymer nanofibers. Adv. Funct. Mater. 23, 862869 (2013).Google Scholar
44.Rivnay, J., Noriega, R., Kline, R.J., Salleo, A., and Toney, M.F.: Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films. Phys. Rev. B 84, 045203 (2011).Google Scholar
45.Hindeleh, A.M. and Hosemann, R.: Microparacrystals: the intermediate stage between crystalline and amorphous. J. Mater. Sci. 26, 51275133 (1991).Google Scholar
46.Rivnay, J., Noriega, R., Northrup, J.E., Kline, R.J., Toney, M.F., and Salleo, A.: Structural origin of gap states in semicrystalline polymers and the implications for charge transport. Phys. Rev. B 83, 121306 (2011).CrossRefGoogle Scholar
47.Assadi, A., Svensson, C., Willander, M., and Inganäs, O.: Field-effect mobility of poly(3-hexylthiophene). Appl. Phys. Lett. 53, 195197 (1988).CrossRefGoogle Scholar
48.Yuen, J.D., Fan, J., Seifter, J., Lim, B., Hufschmid, R., Heeger, A.J., and Wudl, F.: High performance weak donor–acceptor polymers in thin film transistors: effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability. J. Am. Chem. Soc. 133, 2079920807 (2011).Google Scholar
49.Kang, I., An, T.K., Hong, J., Yun, H.-J., Kim, R., Chung, D.S., Park, C.E., Kim, Y.-H., and Kwon, S.-K.: Effect of selenophene in a DPP copolymer incorporating a vinyl group for high-performance organic field-effect transistors. Adv. Mater. 25, 524528 (2013).Google Scholar
50.Donaghey, J.E., Sohn, E.-H., Ashraf, R.S., Anthopoulos, T.D., Watkins, S.E., Song, K., Williams, C.K., and McCulloch, I.: Pyrroloindacenodithiophene polymers: the effect of molecular structure on OFET performance. Polym. Chem. 4, 35373544 (2013).Google Scholar
51.Yiu, A.T., Beaujuge, P.M., Lee, O.P., Woo, C.H., Toney, M.F., and Fréchet, J.M.J.: Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells. J. Am. Chem. Soc. 134, 21802185 (2012).Google Scholar
52.Mei, J. and Bao, Z.: Side chain engineering in solution-processable conjugated polymers. Chem. Mater. 26, 604615 (2014).Google Scholar
53.Coropceanu, V., Cornil, J., da Silva Filho, D.A., Olivier, Y., Silbey, R., and Brédas, J.-L.: Charge transport in organic semiconductors. Chem. Rev. 107, 926952 (2007).Google Scholar
54.Brédas, J.L., Calbert, J.P., da Silva Filho, D.A., and Cornil, J.: Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc. Natl. Acad. Sci. USA 99, 58045809 (2002).CrossRefGoogle ScholarPubMed
55.Olivier, Y., Niedzialek, D., Lemaur, V., Pisula, W., Müllen, K., Koldemir, U., Reynolds, J.R., Lazzaroni, R., Cornil, J., and Beljonne, D.: 25th anniversary article: high-mobility hole and electron transport conjugated polymers: how structure defines function. Adv. Mater. 26, 21192136 (2014).Google Scholar
56.Lei, T., Wang, J.-Y., and Pei, J.: Design, synthesis, and structure–property relationships of isoindigo-based conjugated polymers. Acc. Chem. Res. 47, 11171126 (2014).Google Scholar
57.Deng, Y., Chen, Y., Zhang, X., Tian, H., Bao, C., Yan, D., Geng, Y., and Wang, F.: Donor–acceptor conjugated polymers with dithienocarbazoles as donor units: effect of structure on semiconducting properties. Macromolecules 45, 86218627 (2012).Google Scholar
58.Troisi, A.: The speed limit for sequential charge hopping in molecular materials. Org. Electron. 12, 19881991 (2011).CrossRefGoogle Scholar
59.Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Jiang, K., Lin, H., Ade, H., and Yan, H.: Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5 (2014)..Google Scholar
60.Chen, M.S., Lee, O.P., Niskala, J.R., Yiu, A.T., Tassone, C.J., Schmidt, K., Beaujuge, P.M., Onishi, S.S., Toney, M.F., Zettl, A., and Fréchet, J.M.J.: Enhanced solid-state order and field-effect hole mobility through control of nanoscale polymer aggregation. J. Am. Chem. Soc. 135, 1922919236 (2013).Google Scholar
61.Facchetti, A.: π-conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23, 733758 (2010).Google Scholar
62.McCulloch, I., Ashraf, R.S., Biniek, L., Bronstein, H., Combe, C., Donaghey, J.E., James, D.I., Nielsen, C.B., Schroeder, B.C., and Zhang, W.: Design of semiconducting indacenodithiophene polymers for high performance transistors and solar cells. Acc. Chem. Res. 45, 714722 (2012).CrossRefGoogle ScholarPubMed
63.Carbone, P. and Troisi, A.: Charge diffusion in semiconducting polymers: analytical relation between polymer rigidity and time scales for intrachain and interchain hopping. J. Phys. Chem. Lett. 5, 26372641 (2014).Google Scholar
64.Zhang, W., Smith, J., Watkins, S.E., Gysel, R., McGehee, M., Salleo, A., Kirkpatrick, J., Ashraf, S., Anthopoulos, T., Heeney, M., and McCulloch, I.: Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. J. Am. Chem. Soc. 132, 1143711439 (2010).Google Scholar
65.Zhang, X., Bronstein, H., Kronemeijer, A.J., Smith, J., Kim, Y., Kline, R.J., Richter, L.J., Anthopoulos, T.D., Sirringhaus, H., Song, K., Heeney, M., Zhang, W., McCulloch, I., and DeLongchamp, D.M.: Molecular origin of high field-effect mobility in an indacenodithiophene–benzothiadiazole copolymer. Nat. Commun. 4 (2013).CrossRefGoogle Scholar
66.Schuettfort, T., Huettner, S., Lilliu, S., Macdonald, J.E., Thomsen, L., and McNeill, C.R.: Surface and bulk structural characterization of a high-mobility electron-transporting polymer. Macromolecules 44, 15301539 (2011).Google Scholar
67.Wang, C., Rivnay, J., Himmelberger, S., Vakhshouri, K., Toney, M.F., Gomez, E.D., and Salleo, A.: Ultrathin body poly(3-hexylthiophene) transistors with improved short-channel performance. ACS Appl. Mater. Interfaces 5, 23422346 (2013).Google Scholar
68.Fornari, R.P. and Troisi, A.: Narrower bands with better charge transport: the counterintuitive behavior of semiconducting copolymers. Adv. Mater. 26, 76277631 (2014).Google Scholar
69.Tsao, H.N., Cho, D.M., Park, I., Hansen, M.R., Mavrinskiy, A., Yoon, D.Y., Graf, R., Pisula, W., Spiess, H.W., and Müllen, K.: Ultrahigh mobility in polymer field-effect transistors by design. J. Am. Chem. Soc. 133, 26052612 (2011).Google Scholar
70.Pearson, D.S., Pincus, P.A., Heffner, G.W., and Dahman, S.J.: Effect of molecular weight and orientation on the conductivity of conjugated polymers. Macromolecules 26, 15701575 (1993).Google Scholar
71.Chang, J.-F., Sun, B., Breiby, D.W., Nielsen, M.M., Sölling, T.I., Giles, M., McCulloch, I., and Sirringhaus, H.: Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chem. Mater. 16, 47724776 (2004).Google Scholar
72.Ho, P.K.-H., Chua, L.-L., Dipankar, M., Gao, X.Y., Qi, D.C., Wee, A.T.-S., Chang, J.-F., and Friend, R.H.: Solvent effects on chain orientation and interchain π-interaction in conjugated polymer thin films: direct measurements of the air and substrate interfaces by near-edge x-ray absorption spectroscopy. Adv. Mater. 19, 215221 (2007).CrossRefGoogle Scholar
73.Rivnay, J., Steyrleuthner, R., Jimison, L.H., Casadei, A., Chen, Z., Toney, M.F., Facchetti, A., Neher, D., and Salleo, A.: Drastic control of texture in a high performance n-type polymeric semiconductor and implications for charge transport. Macromolecules 44, 52465255 (2011).Google Scholar
74.Jimison, L.H., Toney, M.F., McCulloch, I., Heeney, M., and Salleo, A.: Charge-transport anisotropy due to grain boundaries in directionally crystallized thin films of regioregular poly(3-hexylthiophene). Adv. Mater. 21, 15681572 (2009).Google Scholar
75.Li, J., Du, J., Xu, J., Chan, H.L.W., and Yan, F.: The influence of gate dielectrics on a high-mobility n-type conjugated polymer in organic thin-film transistors. Appl. Phys. Lett. 100, 033301 (2012).Google Scholar
76.Veres, J., Ogier, S.D., Leeming, S.W., Cupertino, D.C., and Mohialdin Khaffaf, S.: Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv. Funct. Mater. 13, 199204 (2003).Google Scholar
77.Pettersson, F., Österbacka, R., Koskela, J., Kilpelä, A., Remonen, T., Zhang, Y., Inkinen, S., Wilén, C.-E., Bollström, R., Toivakka, M., Määttänen, A., Ihalainen, P., and Peltonen, J.: Ion-modulated transistors on paper using phase-separated semiconductor/insulator blends. MRS Commun. 4, 5155 (2014).Google Scholar
78.Cho, J.H., Lee, J., Xia, Y., Kim, B., He, Y., Renn, M.J., Lodge, T.P., and Daniel Frisbie, C.: Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7, 900906 (2008).Google Scholar