Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T07:31:38.082Z Has data issue: false hasContentIssue false

Energetics of substituted polyhedral oligomeric silsesquioxanes: a DFT study

Published online by Cambridge University Press:  30 July 2015

Abu Asaduzzaman*
Affiliation:
Materials Science and Engineering, University of Arizona, Tucson, AZ 85721, USA
Keith Runge
Affiliation:
Materials Science and Engineering, University of Arizona, Tucson, AZ 85721, USA Quantum Theory Project, University of Florida, Gainesville, FL 32611, USA
Krishna Muralidharan
Affiliation:
Materials Science and Engineering, University of Arizona, Tucson, AZ 85721, USA
P.A. Deymier
Affiliation:
Materials Science and Engineering, University of Arizona, Tucson, AZ 85721, USA
Lianyang Zhang
Affiliation:
Civil Engineering and Engineering Mechanics, University of Arizona, Tucson, AZ 85721, USA
*
Address all correspondence to Abu Asaduzzaman at[email protected]
Get access

Abstract

First principles density functional theory calculations were conducted to investigate the structures and energetics of polyhedral oligomeric silsesquioxane (POSS) molecules with varying aluminum and alkali (sodium or potassium) concentrations. Notable trends emerge from this study namely, (1) the thermodynamic stability of the substituted POSS molecules is critically dependent on the interplay between size and composition of the POSS structures, and (2) larger POSS structures provide lower central electron density and hence better accommodate the central alkali atom. These observations, when viewed in the context of aluminosilicate based geopolymers, provide fundamental insights into the relations that describe the structure composition interplay of their underlying monomers.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Scott, D.W.: Thermal rearrangement of branched-chain methylpolysiloxanes. J. Am. Chem. Soc. 68, 356 (1946).Google Scholar
2.Zhang, Q., He, H., Xi, K., Huang, X., Yu, X., and Jia, X.: Synthesis of N-Phenylaminomethyl POSS and its utilization in polyurethane. Macromolecules 44, 550 (2011).Google Scholar
3.Anderson, S.E., Baker, E.S., Mitchell, C., Haddad, T.S., and Bowers, M.T.: Structure of hybrid polyhedral oligomeric silsesquioxane propyl methacrylate oligomers using ion mobility mass spectrometry and molecular mechanics. Chem. Mater. 17, 2537 (2005).CrossRefGoogle Scholar
4.Feher, F.J. and Newman, D.A.: Enhanced silylation reactivity of a model for silica surfaces. J. Am. Chem. Soc. 112, 1931 (1990).CrossRefGoogle Scholar
5.Feher, F.J., Newman, D.A., and Walzer, J.F.: Silsesquioxanes as models for silica surfaces. J. Am. Chem. Soc. 111, 1741 (1989).CrossRefGoogle Scholar
6.Hacker, N.P.: Organic and inorganic spin-on polymers for low-dielectric-constant applications. MRS Bull. 22, 33 (1997).CrossRefGoogle Scholar
7.Jin, C., Luttmer, J.D., Smith, D.M., and Ramos, T.A.: Nanoporous silica as an ultralow-k dielectric. MRS Bull. 22, 39 (1997).Google Scholar
8.Feher, F.J. and Tajima, T.L.: Synthesis of a molybdenum-containing silsesquioxane which rapidly catalyzes the metathesis of olefins. J. Am. Chem. Soc. 116, 2145 (1994).Google Scholar
9.Feher, F.J., Walzer, J.F., and Blanski, R.L.: Olefin polymerization by vanadium-containing polyhedral oligometallasilsesquioxanes. J. Am. Chem. Soc. 113, 3618 (1991).Google Scholar
10.Feher, F.J.: Polyhedral oligometallasilsesquioxanes (POMSS) as models for silica-supported transition-metal catalysts. Synthesis and characterization of (C5Me5)Zr[(Si7O12)(c-C6H11)7]. J. Am. Chem. Soc. 108, 3850 (1986).CrossRefGoogle Scholar
11.Edelmann, F.T.: Model compounds for metal oxides on SiO2 surfaces. Angew. Chem. Int. Ed. 31, 586 (1992).Google Scholar
12.Herrmann, W.A., Anwander, R., Dufaud, V., and Scherer, W.: Molecular siloxane complexes of rare earth metals—model systems for silicate-supported catalysts? Angew. Chem. Int. Ed. 33, 1285 (1994).Google Scholar
13.Davidovits, J.: Geopolymer Chemistry and Applications, 3rd ed. (Institut Geopolymere, Saint-Quentin, 2011).Google Scholar
14.Provis, J.L. and van Deventer, J.S.J.: Geopolymers: Structures, Processing, Properties and Industrial Applications (Woodhead Publishing Limited, Cambridge, 2009).Google Scholar
15.Duxson, P., Provis, J.L., Lukey, G.C., and van Deventer, J.S.J.: The role of inorganic polymer technology in the development of green concrete. Cem. Concr. Res. 37, 1590 (2007).Google Scholar
16.Duxson, P., Fernandez-Jimenez, A., Provis, J.L., Lukey, G.C., Palomo, A., and van Deventer, J.S.J.: Geopolymer technology: the current state of the art. J. Mater. Sci. 42, 2917 (2007).Google Scholar
17.Gaussian 09, Revision D.01, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J.: (Gaussian, Inc., Wallingford, CT, 2009).Google Scholar
18.Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993).Google Scholar
19.Lee, C.T., Yang, W.T., and Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988).CrossRefGoogle ScholarPubMed
20.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
21.Li, X. and Frisch, M.J.: Energy-represented DIIS within a hybrid geometry optimization method. J. Chem. Theory Comput. 2, 835 (2006).CrossRefGoogle ScholarPubMed
22.Baudilio, T. and Gordon, M.S.: Insertion mechanism of N2 and O2 into Tn(n = 8, 10, 12)-silsesquioxane Framework. J. Phys. Chem. B 106, 11764 (2002).Google Scholar
23.Törnroos, K.W.: Structure of octahydridosilasesquioxane determined by neutron diffraction. Acta Cryst. C50, 1646 (1994).Google Scholar
24.Xiang, K.-H., Pandey, R., Pernisz, U.C., and Freeman, C.: Theoretical study of structural and electronic properties of H-silsesquioxanes. J. Phys. Chem. B 102, 8704 (1998).Google Scholar
25.Earley, C.W.: A quantum mechanical investigation of silsesquioxane cages. J. Phys. Chem. 98, 8693 (1994).CrossRefGoogle Scholar
26.Heyde, T.P.E., Bürgi, H.-B., Bürgi, H., and Törnroos, K.W.: The crystal and molecular structure of the symmetrical silasesquioxane H8Si8O12 at 100 K, a molecular building block of some zeolites. Chimica 45, 38 (1991).Google Scholar
27.Törnroos, K.W., Bürgi, H.-B., Calzaferri, G., and Bürgy, H.: The crystal and molecular structure of dodecahydridosilasesquioxane, H12Si12O18. Acta Cryst. B51, 155 (1995).Google Scholar
28.Gatti, C., Ottonello, G., and Richet, P.: Energetics and bonding in aluminosilicate rings with alkali metal and alkaline-earth metal charge-compensating cations. J. Phys. Chem. A 116, 8584 (2012).Google Scholar
29.Xiang, Y., Du, J., Smedskjaer, M.M., and Mauro, J.C.: Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations. J. Chem. Phys. 139, 044507 (2013).Google Scholar
30.Bauchy, M.: Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: the role of the potential. J. Chem. Phys. 141, 024507 (2014).CrossRefGoogle ScholarPubMed
31.Loewenstein, W.: The distribution of aluminum in the tetrahedra of silicates and aluminate. Am. Mineral. 39, 92 (1954).Google Scholar