Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T10:50:54.555Z Has data issue: false hasContentIssue false

Elastomer-based MEMS optical interferometric transducers for highly sensitive surface stress sensing for biomolecular detection

Published online by Cambridge University Press:  26 February 2019

Kazuhiro Takahashi*
Affiliation:
Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempakucho, Toyohashi, Aichi 441-8580, Japan JST PRESTO, Chiyoda, Tokyo 102-0076, Japan
Toshinori Fujie*
Affiliation:
JST PRESTO, Chiyoda, Tokyo 102-0076, Japan School of Life Science and Technology, Tokyo Institute of Technology, B-50, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan Waseda Institute for Advanced Study, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
Reina Teramoto
Affiliation:
Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempakucho, Toyohashi, Aichi 441-8580, Japan
Isao Takahashi
Affiliation:
Department of Life Science and Medical Bio-Science, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
Nobutaka Sato
Affiliation:
Department of Life Science and Medical Bio-Science, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
Shinji Takeoka
Affiliation:
Department of Life Science and Medical Bio-Science, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
Kazuaki Sawada
Affiliation:
Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempakucho, Toyohashi, Aichi 441-8580, Japan
*
Address all correspondence to Kazuhiro Takahashi, Toshinori Fujie at [email protected]; [email protected]
Address all correspondence to Kazuhiro Takahashi, Toshinori Fujie at [email protected]; [email protected]
Get access

Abstract

We developed a microelectromechanical-system optical interferometer based on an elastomer nanosheet using a polystyrene-polybutadiene-polystyrene (SBS) triblock copolymer for a suspended membrane as a way to improve the stress sensitivity for surface stress detection. The elastomeric SBS nanosheet provides a low Young's modulus of 28 ± 11 MPa, a large elastic strain of 24 ± 12%, and high adhesiveness, of which the surface charge and mechanical property are tunable by layer-by-layer (LbL) deposition of polysaccharides. A freestanding SBS nanosheet can be formed above a microcavity using a dry transfer technique without applying vacuum or high-temperature processes. The maximum deflection associated with molecular adsorption increased by sevenfold compared with a parylene-C-based optical interferometric transducer.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

References

1.Esashi, M. and Matsuo, T.: Integrated micro multi ion sensor using field effect of semiconductor. IEEE Trans. Biomed. Eng. BME 25, 184 (1978).10.1109/TBME.1978.326245Google Scholar
2.Sawada, K., Mimura, S., Tomita, K., Nakanishi, T., Tanabe, H., Ishida, M., and Ando, T.: Novel CCD-based pH imaging sensor. IEEE Trans. Electron Devices 46, 1846 (1999).Google Scholar
3.Sakata, T., Kamahori, M., and Miyahara, Y.: Immobilization of oligonucleotide probes on Si3N4 surface and its application to genetic field effect transistor. Mater. Sci. Eng. C 24, 827 (2004).10.1016/j.msec.2004.08.042Google Scholar
4.Ohno, Y., Maehashi, K., Inoue, K., and Matsumoto, K.: Label-free aptamer-based immunoglobulin sensors using graphene field-effect transistor. Jpn. J. Appl. Phys. 50, 070120 (2011).Google Scholar
5.Sakata, T. and Miyahara, Y.: Direct transduction of allele-specific primer extension into electrical signal using genetic field effect transistor. Biosens. Bioelectron. 22, 1311 (2007).Google Scholar
6.Raorane, D. A., Lim, M. D., Chen, F. F., Craik, C. S., and Majumdar, A.: Quantitative and label-free technique for measuring protease activity and inhibition using a microfluidic cantilever array. Nano Lett. 8, 2968 (2008).Google Scholar
7.Watari, M., Galbraith, J., Lang, H.-P., Sousa, M., Hegner, M., Gerber, C., Horton, M. A., and McKendry, R. A.: Investigating the molecular mechanisms of in-plane mechanochemistry on cantilever arrays. J. Am. Chem. Soc. 129, 601 (2007).Google Scholar
8.Fritz, J., Baller, M. K., Lang, H. P., Rothuizen, H., Vettiger, P., Meyer, E., Guntherodt, H. J., Gerber, C., and Gimzewski, J. K.: Translating biomolecular recognition into nanomechanics. Science 288, 316 (2000).Google Scholar
9.Zhang, J., Lang, H. P., Huber, F., Bietsch, A., Grange, W., Certa, U., McKendry, R., Guntherodt, H.-J., Hegner, M., and Gerber, C.: Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat. Nanotechnol. 1, 214 (2006).Google Scholar
10.Wu, G. H., Datar, R. H., Hansen, K. M., Thundat, T., Cote, R. J., and Majumdar, A.: Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat. Biotechnol. 19, 856 (2001).Google Scholar
11.Gorelkin, P. V., Erofeev, A. S., Kiselev, G. A., Kolesov, D. V., Dubrovin, E. V., and Yaminsky, I. V.: Synthetic sialylglycopolymer receptor for virus detection using cantilever-based sensors. Analyst 140, 6131 (2015).Google Scholar
12.Berger, R., Delamarche, E., Lang, H. P., Gerber, C., Gimzewski, J. K., Meyer, E., and Guntherodt, H. J.: Surface stress in the self-assembly of alkanethiols on gold. Science 276, 2021 (1997).Google Scholar
13.Ghatkesar, M. K., Lang, H. P., Gerber, C., Hegner, M., and Braun, T.: Comprehensive characterization of molecular interactions based on nanomechanics. PLoS One 3, e3610 (2008).Google Scholar
14.Buchapudi, K., Xu, X., Ataian, Y., Ji, H.-F., and Schulte, M.: Micromechanical measurement of AChBP binding for label-free drug discovery. Analyst 137, 263 (2012).Google Scholar
15.Satyanarayana, S., McCormick, D. T., and Majumdar, A.: Parylene micro membrane capacitive sensor array for chemical and biological sensing. Sens. Actuators, B 115, 494 (2006).Google Scholar
16.Wee, K. W., Kang, G. Y., Park, J., Kang, J. Y., Yoon, D. S., Park, J. H., and Kim, T. S.: Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilever. Biosens. Bioelectron. 20, 1932 (2005).Google Scholar
17.Yoshikawa, G., Akiyama, T., Gautsch, S., Vettiger, P., and Rohrer, H.: Nanomechanical membrane-type surface stress sensor. Nano Lett. 11, 1044 (2011).Google Scholar
18.Arlett, J. L., Myers, E. B., and Roukes, M. L.: Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 6, 203 (2011).Google Scholar
19.Takahashi, K., Oyama, H., Misawa, N., Okumura, K., Ishida, M., and Sawada, K.: Surface stress sensor using MEMS-based Fabry–Perot interferometer for label-free biosensing. Sens. Actuators, B 188, 393 (2013).10.1016/j.snb.2013.06.106Google Scholar
20.Maruyama, S., Hizawa, T., Takahashi, K., and Sawada, K.: Optical-interferometry-based CMOS-MEMS sensor transduced by stress induced nanomechanical deflection. Sensors 18(1), 138 (2018).Google Scholar
21.Takahashi, T., Hizawa, T., Misawa, N., Taki, M., Sawada, K., and Takahashi, K.: Surface stress sensor based on MEMS Fabry–Perot interferometer with high wavelength selectivity for label-free biosensing. J. Micromech. Microeng. 28, 054002 (2018).Google Scholar
22.Sato, N., Murata, A., Fujie, T., and Takeoka, S.: Stretchable, adhesive and ultra-conformable elastomer thin films. Soft Matter 12, 9202 (2016).Google Scholar
23.Fujie, T., Matsutani, N., Kinoshita, M., Okamura, Y., Saito, A., and Takeoka, S.: Adhesive, flexible, and robust polysaccharide nanosheets integrated for tissue-defect repair. Adv. Funct. Mater. 19, 2560 (2009).Google Scholar
24.Fujie, T.: Development of free-standing polymer nanosheets for advanced medical and health-care applications. Polym. J. 48, 773 (2016).10.1038/pj.2016.38Google Scholar
25.Kumagai, H., Sato, N., Takeoka, S., Sawada, K., Fujie, T., and Takahashi, K.: Optomechanical characterization of freestanding stretchable nanosheet based on polystyrene-polybutadiene-polystyrene copolymer. Appl. Phys. Express 10, 011601 (2017).Google Scholar
26.Takahashi, K., Fujie, T., Sato, N., Takeoka, S., and Sawada, K.: MEMS optical interferometry-based pressure sensor using elastomer nanosheet developed by dry transfer technique. Jpn. J. Appl. Phys. 57, 010302 (2018).Google Scholar
27.Fritz, J.: Cantilever biosensors. Analyst 133, 855 (2008).Google Scholar
28.Schmidt, M., Werther, B., Furstenau, N., Matthias, M., and Melz, T.: Fiber-optic extrinsic Fabry–Perot interferometer strain sensor with <50 pm displacement resolution using three-wavelength digital phase demodulation. Opt. Express 8, 475 (2001).Google Scholar
29.Ge, S., Kojio, K., Takahara, A., and Kajiyama, T.: Bovine serum albumin adsorption onto immobilized organotrichlorosilane surface: Influence of the phase separation on protein adsorption patterns. J. Biomater. Sci. Polym. Ed. 9, 131 (1998).Google Scholar
Supplementary material: File

Takahashi et al. supplementary material

Takahashi et al. supplementary material 1

Download Takahashi et al. supplementary material(File)
File 1.5 MB