Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T10:36:43.392Z Has data issue: false hasContentIssue false

The effects of fluid composition and shear conditions on bacterial adhesion to an antifouling peptide-coated surface

Published online by Cambridge University Press:  23 August 2018

Patrícia Alves
Affiliation:
LEPABE – Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n 4200-465 Porto, Portugal
Sivan Nir
Affiliation:
Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
Meital Reches*
Affiliation:
Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
Filipe Mergulhão*
Affiliation:
LEPABE – Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n 4200-465 Porto, Portugal
*
Address all correspondence to Meital Reches and Filipe Mergulhão at E-mail: [email protected] and [email protected]
Address all correspondence to Meital Reches and Filipe Mergulhão at E-mail: [email protected] and [email protected]
Get access

Abstract

Biofilms can damage implants and are difficult to treat. Here, we assessed the performance of a tripeptide that self-assembles into an antifouling coating over a broad range of shear conditions that are relevant to biomedical applications. Adhesion assays were performed using a parallel plate flow chamber. The results show that the coating can reduce Escherichia coli adhesion up to 70% when compared with glass. At a shear rate of 15/s, typical for urinary catheters, the coating reduced the adhesion by more than 50%. These findings suggest critical features that should be considered when developing surfaces for biomedical purposes.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Costerton, J.W., Stewart, P.S., and Greenberg, E.P.: Bacterial biofilms: a common cause of persistent infections. Science 284, 1318 (1999).Google Scholar
2.Miquel, S., Lagrafeuille, R., Souweine, B., and Forestier, C.: Anti-biofilm activity as a health issue. Front Microbiol. 7, 592 (2016).Google Scholar
3.Stamm, W.E. and Norrby, S.R.: Urinary tract infections: disease panorama and challenges. J. Infect. Dis. 183, S1 (2001).Google Scholar
4.Koseoglu, H., Aslan, G., Esen, N., Sen, B.H., and Coban, H.: Ultrastructural stages of biofilm development of Escherichia coli on urethral catheters and effects of antibiotics on biofilm formation. Urology 68, 942 (2006).Google Scholar
5.Stamm, W.E. and Hooton, T.M.: Management of urinary tract infections in adults. N. Engl. J. Med. 329, 1328 (1993).Google Scholar
6.Shunmugaperumal, T.: Biofilm eradication and prevention: a pharmaceutical approach to medical device infections (John Wiley & Sons, New Jersey, 2010).Google Scholar
7.Nir, S. and Reches, M.: Bio-inspired antifouling approaches: the quest towards non-toxic and non-biocidal materials. Curr. Opin. Biotechnol. 39, 48 (2016).Google Scholar
8.Kirschner, C.M. and Brennan, A.B.: Bio-inspired antifouling strategies. Annu. Rev. Mater. Res. 42, 211 (2012).Google Scholar
9.Banerjee, I., Pangule, R.C., and Kane, R.S.: Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 23, 690 (2011).Google Scholar
10.Li, B., and Logan, B.E.: Bacterial adhesion to glass and metal-oxide surfaces. Colloids Surf. B 36, 81 (2004).Google Scholar
11.An, Y.H., and Friedman, R.J.: Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J. Biomed. Mater. Res. Part A 43, 338 (1998).Google Scholar
12.Moreira, J.M., Simões, M., Melo, L.F., and Mergulhão, F.J.: Escherichia coli adhesion to surfaces–a thermodynamic assessment. Colloid Polym. Sci. 293, 177 (2015).Google Scholar
13.Nuzzo, R.G.: Biomaterials: stable antifouling surfaces. Nat. Mater. 2, 207 (2003).Google Scholar
14.Maity, S., Nir, S., Zada, T., and Reches, M.: Self-assembly of a tripeptide into a functional coating that resists fouling. Chem. Comm. 50, 11154 (2014).Google Scholar
15.Azeredo, J., Azevedo, N.F., Briandet, R., Cerca, N., Coenye, T., Costa, A.R., Desvaux, M., Di Bonaventura, G., Hébraud, M., and Jaglic, Z.: Critical review on biofilm methods. Crit. Rev. Microbiol. 43, 313 (2017).Google Scholar
16.Absolom, D.R., Lamberti, F.V., Policova, Z., Zingg, W., van Oss, C.J., and Neumann, A.W.: Surface thermodynamics of bacterial adhesion. Appl. Environ. Microbiol. 46, 90 (1983).Google Scholar
17.Liu, C. and Zhao, Q.: Influence of surface-energy components of Ni–P–TiO2–PTFE nanocomposite coatings on bacterial adhesion. Langmuir 27, 9512 (2011).Google Scholar
18.Gomes, L.C., Silva, L.N., Simoes, M., Melo, L.F., and Mergulhao, F.J.: Escherichia coli adhesion, biofilm development and antibiotic susceptibility on biomedical materials. J. Biomed. Mater. Res. Part A 103, 1414 (2015).Google Scholar
19.Gomes, L., Moreira, J., Teodósio, J., Araújo, J., Miranda, J., Simões, M., Melo, L., and Mergulhão, F.: 96-well microtiter plates for biofouling simulation in biomedical settings. Biofouling 30, 535 (2014).Google Scholar
20.Ong, Y.L., Razatos, A., Georgiou, G., and Sharma, M.M.: Adhesion Forces between E. coli bacteria and biomaterial surfaces. Langmuir 15, 2719 (1999).Google Scholar
21.Gallardo-Moreno, A.M., Navarro-Pérez, M.L., Vadillo-Rodríguez, V., Bruque, J.M., and González-Martín, M.L.: Insights into bacterial contact angles: difficulties in defining hydrophobicity and surface Gibbs energy. Colloids Surf. B 88, 373 (2011).Google Scholar
22.Baier, R., Meyer, A., Natiella, J., Natiella, R., and Carter, J.: Surface properties determine bioadhesive outcomes: methods and results. J. Biomed. Mater. Res. Part A 18, 337 (1984).Google Scholar
23.Moreira, J., Araújo, J., Miranda, J.M., Simões, M., Melo, L., and Mergulhão, F.: The effects of surface properties on Escherichia coli adhesion are modulated by shear stress. Colloids Surf. B 123, 1 (2014).Google Scholar
24.Busscher, H.J. and van der Mei, H.C.: Microbial adhesion in flow displacement systems. Clin. Microbiol. Rev. 19, 127 (2006).Google Scholar
25.Bakker, D., Van der Plaats, A., Verkerke, G., Busscher, H., and Van der Mei, H.: Comparison of velocity profiles for different flow chamber designs used in studies of microbial adhesion to surfaces. Appl. Environ. Microbiol. 69, 6280 (2003).Google Scholar
26.Velraeds, M.M., Van Der Mei, H.C., Reid, G., and Busscher, H.J.: Inhibition of initial adhesion of uropathogenic Enterococcus faecalis to solid substrata by an adsorbed biosurfactant layer from Lactobacillus acidophilus. Urology 49, 790 (1997).Google Scholar
27.Hwang, N.H., Turitto, V.T., and Yen, M.R.: Advances in cardiovascular engineering (Springer Science & Business Media, New York, 2013).Google Scholar
28.Inauen, W., Baumgartner, H.R., Bombeli, T., Haeberli, A., and Straub, P.W.: Dose-and shear rate-dependent effects of heparin on thrombogenesis induced by rabbit aorta subendothelium exposed to flowing human blood. Arterioscler. Thromb. Vasc. Biol. 10, 607 (1990).Google Scholar
29.Marx, K.A.: Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution − surface interface. Biomacromolecules 4, 1099 (2003).Google Scholar
30.Tompkins, H.G. and McGahan, W.A.: Spectroscopic Ellipsometry and Reflectometry: A User's Guide (Wiley, New York, 1999).Google Scholar
31.Moreira, J., Ponmozhi, J., Campos, J., Miranda, J.M., and Mergulhão, F.: Micro-and macro-flow systems to study Escherichia coli adhesion to biomedical materials. Chem. Eng. Sci. 126, 440 (2015).Google Scholar
32.Teodósio, J., Simões, M., Melo, L., and Mergulhão, F.: Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow. Biofouling 27, 1 (2011).Google Scholar
33.Teodósio, J., Simões, M., and Mergulhão, F.: The influence of nonconjugative Escherichia coli plasmids on biofilm formation and resistance. J. Appl. Microbiol. 113, 373 (2012).Google Scholar
34.Neidhardt, F.C.: Motility and chemotaxis. In Escherichia coli and Salmonella Typhimurium: Cellular and Molecular biology (ASM Press, Washington, DC, 1987), p. 732.Google Scholar
35.Moreira, J., Fulgêncio, R., Alves, P., Machado, I., Bialuch, I., Melo, L., Simões, M., and Mergulhão, F.: Evaluation of SICAN performance for biofouling mitigation in the food industry. Food Control 62, 201 (2016).Google Scholar
36.Moreira, J., Gomes, L., Simões, M., Melo, L., and Mergulhão, F.: The impact of material properties, nutrient load and shear stress on biofouling in food industries. Food Bioprod. Process. 95, 228 (2015).Google Scholar
37.Frias, J., Ribas, F., and Lucena, F.: Effects of different nutrients on bacterial growth in a pilot distribution system. Antonie Van Leeuwenhoek 80, 129 (2001).Google Scholar
38.Van Oss, C.: Hydrophobicity of biosurfaces—origin, quantitative determination and interaction energies. Colloids Surf. B 5, 91 (1995).Google Scholar
39.Van Oss, C.J., Good, R.J., and Chaudhury, M.K.: Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 4, 884 (1988).Google Scholar
40.Janczuk, B., Chibowski, E., Bruque, J., Kerkeb, M., and Caballero, F.G.: On the consistency of surface free energy components as calculated from contact angles of different liquids: an application to the cholesterol surface. J. Colloid Interface Sci. 159, 421 (1993).Google Scholar
41.Van Oss, C.J.: Interfacial Forces in Aqueous Media (CRC press, New York, 2006).Google Scholar
42.Ojovan, M.I.: Glass formation in amorphous SiO2 as a percolation phase transition in a system of network defects. J. Exp. Theor. Phys. 79, 632 (2004).Google Scholar
43.Teodósio, J.S., Silva, F.C., Moreira, J.M., Simões, M., Melo, L.F., Alves, M.A., and Mergulhão, F.J.: Flow cells as quasi-ideal systems for biofouling simulation of industrial piping systems. Biofouling 29, 953 (2013).Google Scholar
44.Fletcher, M. and Loeb, G.: Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Appl. Environ. Microbiol. 37, 67 (1979).Google Scholar
45.Cerca, N., Pier, G.B., Vilanova, M., Oliveira, R., and Azeredo, J.: Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Res. Microbiol. 156, 506 (2005).Google Scholar
46.Oliveira, K., Oliveira, T., Teixeira, P., Azeredo, J., Henriques, M., and Oliveira, R.: Comparison of the adhesion ability of different Salmonella enteritidis serotypes to materials used in kitchens. J. Food Protect 69, 2352 (2006).Google Scholar
47.Bos, R., Van der Mei, H.C., and Busscher, H.J.: Physico-chemistry of initial microbial adhesive interactions–its mechanisms and methods for study. FEMS Microbiol. Rev. 23, 179 (1999).Google Scholar
48.Graham, M.V., Mosier, A.P., Kiehl, T.R., Kaloyeros, A.E., and Cady, N.C.: Development of antifouling surfaces to reduce bacterial attachment. Soft Matter 9, 6235 (2013).Google Scholar
Supplementary material: File

Alves et al. supplementary material

Tables S1 and Figures S1-S2

Download Alves et al. supplementary material(File)
File 318.7 KB