Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T07:31:44.197Z Has data issue: false hasContentIssue false

Dual light-emitting Yb3+,Er3+-doped La(IO3)3 iodate nanocrystals: up-conversion and second harmonic generation

Published online by Cambridge University Press:  14 October 2019

Sylvain Regny
Affiliation:
Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, F-38000Grenoble, France
Kévin Bredillet
Affiliation:
Univ. Savoie Mont Blanc, SYMME, F-74000Annecy, France
Jérémy Riporto
Affiliation:
Univ. Savoie Mont Blanc, SYMME, F-74000Annecy, France
Isabelle Gautier-Luneau
Affiliation:
Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, F-38000Grenoble, France
Yannick Mugnier
Affiliation:
Univ. Savoie Mont Blanc, SYMME, F-74000Annecy, France
Ronan Le Dantec
Affiliation:
Univ. Savoie Mont Blanc, SYMME, F-74000Annecy, France
Géraldine Dantelle*
Affiliation:
Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, F-38000Grenoble, France
*
Address all correspondence to Géraldine Dantelle at [email protected]
Get access

Abstract

The authors report the microwave-assisted hydrothermal synthesis of α-La(IO3)3 nanocrystals doped with Yb3+ and Er3+ ions, along with their structural and optical characterizations. 50-nm-sized α-La0.9−xYb0.1Erx(IO3)3 nanocrystals with x = 0.005, 0.01, and 0.02 were synthesized and dispersed in ethylene glycol. The as-obtained suspensions exhibit both second harmonic generation (SHG) signal and up-conversion photoluminescence (UC-PL) without interplay between the two signals under near-infrared resonant excitation. The relative intensity of SHG and UC-PL emission can be modulated according to the excitation wavelength. The most intense UC-PL signal is obtained from a 980-nm excitation, thanks to the sensitization of Er3+ by Yb3+.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wang, K., He, X., Yang, X., and Shi, H.: Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels. Acc. Chem. Res. 46, 1367 (2013).10.1021/ar3001525CrossRefGoogle ScholarPubMed
2.Bouzigues, C., Gacoin, T., and Alexandrou, A.: Biological applications of rare-earth based nanoparticles. ACS Nano 5, 8488 (2011).10.1021/nn202378bCrossRefGoogle ScholarPubMed
3.Faklaris, O., Garrot, D., Joshi, V., Druon, F., Boudou, J.P., Sauvage, T., Georges, P., Curmi, P.A., and Treussart, F.: Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway. Small 4, 2236 (2008).10.1002/smll.200800655CrossRefGoogle ScholarPubMed
4.Wolfbeis, O.S.: An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 44, 4743 (2015).10.1039/C4CS00392FCrossRefGoogle ScholarPubMed
5.Gigan, S.: Optical microscopy aims deep. Nat. Photonics 11, 14 (2017).10.1038/nphoton.2016.257CrossRefGoogle Scholar
6.Dantelle, G., Matulionyte, M., Testemale, D., Cantarano, A., Ibanez, A., and Vetrone, F.: Nd3+-doped Gd3Sc2Al3O12 nanocrystals: towards efficient nanoprobes for temperature sensing. Phys. Chem. Chem. Phys. 21, 11132 (2019).10.1039/C9CP01808ECrossRefGoogle Scholar
7.del Rosal, B., Rocha, U., Ximendes, E.C., Martín Rodríguez, E., Jaque, D., and García Sol, J.: Nd3+ ions in nanomedicine: perspectives and applications. Opt. Mater. 63, 185 (2017).10.1016/j.optmat.2016.06.004CrossRefGoogle Scholar
8.Wang, R., Li, X., Zhou, L., and Zhang, F.: Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew. Chem. Int. Ed. 53, 12086 (2014).10.1002/anie.201407420CrossRefGoogle ScholarPubMed
9.Tan, M., del Rosal, B., Zhang, Y., Martín Rodríguez, E., Hu, J., Zhou, Z., Fan, R., Ortgies, D.H., Fernández, N., Chaves-Coira, I., Núñez, Á, Jaque, D., and Chen, G.: Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated in vivo optical imaging in the second biological window. Nanoscale 10, 17771 (2018).10.1039/C8NR02382DCrossRefGoogle ScholarPubMed
10.Chinnathambi, S. and Shirahata, N.: Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging. Sci. Technol. Adv. Mater. 20, 337 (2019).10.1080/14686996.2019.1590731CrossRefGoogle ScholarPubMed
11.Mayer, L., Dantelle, G., Jacques, V., Perruchas, S., Patriarche, G., Roch, J.F., and Gacoin, T.: Dual light emitting nanoparticles: second harmonic generation combined with rare-earth photoluminescence. J. Mater. Chem. C 2, 7681 (2014).10.1039/C4TC01227ECrossRefGoogle Scholar
12.Pantazis, P., Maloney, J., Wu, D., and Fraser, S.E.: Second harmonic generating (SHG) nanoprobes for in vivo imaging. PNAS 107, 14535 (2010).10.1073/pnas.1004748107CrossRefGoogle ScholarPubMed
13.Staedler, D., Magouroux, T., Hadji, R., Joulaud, C., Extermann, J., Schwung, S., Passemard, S., Kasparian, C., Clarke, G., Gerrmann, M., Le Dantec, R., Mugnier, Y., Rytz, D., Ciepielewski, D., Galez, C., Gerber-Lemaire, S., Juillerat-Jeanneret, L., Bonacina, L., and Wolf, J.-P.: Harmonic Nanocrystals for biolabeling: a survey of optical properties and biocompatibility. ACS Nano 63, 2542 (2012).10.1021/nn204990nCrossRefGoogle Scholar
14.Dubreil, L., Leroux, I., Ledevin, M., Schleder, C., Lagalice, L., Lovo, C., Fleurisson, R., Passemard, S., Kilin, V., Gerber-Lemaire, S., Colle, M.-A., Bonacina, L., and Rouger, K.: Multi-harmonic imaging in the second near-infrared window of nanoparticle-labeled stem cells as a monitoring tool in tissue depth. ACS Nano 117, 6672 (2017).10.1021/acsnano.7b00773CrossRefGoogle Scholar
15.Slenders, E., Bove, H., Urbain, M., Mugnier, Y., Yasin Sonay, A., Pantazis, P., Bonacina, L., Vanden Berghe, P., vandeVen, M., and Ameloot, M.: Image correlation spectroscopy with second harmonic generating nanoparticles in suspension and in cells. J. Phys. Chem. Lett. 9, 6112 (2018).10.1021/acs.jpclett.8b02686CrossRefGoogle ScholarPubMed
16.Le, X.L., Zhou, C., Slablab, A., Chauvat, D., Tard, C., Perruchas, S., Gacoin, T., Villeval, P., and Roch, J.F.: Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy. Small 4, 1332 (2008).Google ScholarPubMed
17.Ok, K.M. and Halasyamani, P.S.: New metal iodates: syntheses, structures, and characterizations of noncentrosymmetric La(IO3)3 and NaYI4O12 and centrosymmetric β-Cs2I4O11 and Rb2I6O15(OH)2·H2O. Inorg. Chem. 44, 9353 (2005).10.1021/ic051340uCrossRefGoogle ScholarPubMed
18.Taouti, M.B., Suffren, Y., Leynaud, O., Benbertal, D., Brenier, A., and Gautier-Luneau, I.: Structures, thermal behaviors, and luminescent properties of anhydrous lanthanum iodate polymorphs. Inorg. Chem. 54, 3608 (2015).10.1021/acs.inorgchem.5b00187CrossRefGoogle ScholarPubMed
19.Regny, S., Riporto, J., Mugnier, Y., Le Dantec, R., Kodjikian, S., Pairis, S., Gautier-Luneau, I., and Dantelle, G.: Microwave synthesis and up-conversion properties of SHG-active α-(La,Er)(IO3)3 Nanocrystals. Inorg. Chem. 58, 1647 (2019).10.1021/acs.inorgchem.8b03208CrossRefGoogle ScholarPubMed
20.Joulaud, C., Mugnier, Y., Djanta, G., Dubled, M., Marty, J.C., Galez, C., Wolf, J.P., Bonacina, L., and Le Dantec, R.: Characterization of the nonlinear optical properties of nanocrystals by hyper Rayleigh scattering. J. Nanobiotechnol. 11, S8 (2013).10.1186/1477-3155-11-S1-S8CrossRefGoogle ScholarPubMed
21.Riporto, J., Urbain, M., Mugnier, Y., Multian, V., Riporto, F., Bredillet, K., Beauquis, S., Galez, C., Monnier, V., Chevolot, Y., Gayvoronsky, V., Bonacina, L., and Le Dantec, R.: Second harmonic spectroscopy of ZnO, BiFeO3 and LiNbO3 nanocrystals. Opt. Mater. Express 9, 1955 (2019).10.1364/OME.9.001955CrossRefGoogle Scholar
22.Suffren, Y., Leynaud, O., Plaindoux, P., Brenier, A., and Gautier-Luneau, I.: Differences and similarities between lanthanum and rare-earth iodate anhydrous polymorphs: structures, thermal behaviors, and luminescent properties. Inorg. Chem. 55, 11264 (2016).10.1021/acs.inorgchem.6b01850CrossRefGoogle ScholarPubMed
23.Dieke, G.H.: Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience Publishers, New York, NY, USA, 1968).Google Scholar
24.Peijzela, P.S., Meijerink, A., Wegh, R.T., Reid, M.F., and Burdick, G.W.: A complete 4f n energy level diagram for all trivalent lanthanide ions. J. Solid State Chem. 178, 448 (2005).10.1016/j.jssc.2004.07.046CrossRefGoogle Scholar
25.Pollnau, M., Gamelin, D.R., Lüthi, S.R., Güdel, H.U., and Hehlen, M.P.: Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 61, 3337 (2000).10.1103/PhysRevB.61.3337CrossRefGoogle Scholar
26.Suyver, J.F., Aebischer, A., García-Revilla, S., Gerner, P., and Güdel, H.U.: Anomalous power dependence of sensitized upconversion luminescence. Phys. Rev. B 71, 125123 (2005).10.1103/PhysRevB.71.125123CrossRefGoogle Scholar
27.Blasse, G. and Grabmaier, B.C.: Luminescent Materials (Springer-Verlag, Berlin Heidelberg, 1994).10.1007/978-3-642-79017-1CrossRefGoogle Scholar
28.Huang, F., Liu, X., Ma, Y., Kang, S., Hu, L., and Chena, D.: Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+ co-doped fluorotellurite glasses under different excitations. Sci. Rep. 5, 8233 (2015).10.1038/srep08233CrossRefGoogle Scholar
29.Dong, H., Sun, L.D., and Yan, C.H.: Energy transfer in lanthanide upconverting studies for extended optical applications. Chem. Soc. Rev. 44, 1608 (2015).10.1039/C4CS00188ECrossRefGoogle ScholarPubMed
30.Chang, H.-Y., Kim, S.-H., Halasyamani, P.S., and Ok, K.M.: Alignment of lone pairs in a new polar material: synthesis, characterization, and functional properties of Li2Ti(IO3)6. J. Am. Chem. Soc. 131, 2426 (2009).10.1021/ja808469aCrossRefGoogle Scholar
31.Sun, C.F., Hua, C.L., and Mao, J.G.: PbPt(IO3)6(H2O): a new polar material with two types of stereoactive lone-pairs and a very large SHG response. Chem. Commun. 48, 4220 (2012).10.1039/c2cc30326dCrossRefGoogle Scholar
Supplementary material: File

Regny et al. supplementary material

Regny et al. supplementary material

Download Regny et al. supplementary material(File)
File 112.7 KB