Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T10:43:26.005Z Has data issue: false hasContentIssue false

Direct visualization of nano and microscale polymer morphologies in as-prepared and dialyzed polyampholyte hydrogels by electron microscopy techniques

Published online by Cambridge University Press:  13 August 2018

Xinda Li
Affiliation:
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6 G 1H9, Canada
Hemant Charaya
Affiliation:
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6 G 1H9, Canada
Thuy Nguyen Thanh Tran
Affiliation:
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6 G 1H9, Canada
Byeongdu Lee
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
Jae-Young Cho
Affiliation:
National Research Council of Canada (NRC), 11421 Saskatchewan Drive NW, Edmonton, Alberta T6 G 2M9, Canada
Hyun-Joong Chung*
Affiliation:
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6 G 1H9, Canada
*
Address all correspondence to Hyun-Joong Chung at [email protected]
Get access

Abstract

The structure of polymer networks in hydrogels determines the properties. In this study, we investigated the structure of a charge-balanced polyampholyte, poly(4-vinylbenzenesulfonate-co-[3-(methacryloylamino) propyl] trimethylammonium chloride). From as-prepared samples, nanoscale globules were visualized in polyampholyte hydrogels for the first time. The impact of dialyses processes on polymer structures were also studied. In deionized water, salt ions are leached out, thus polymer chains undergo zipping process to form cellular structure with micrometer-thick polymer walls that allow mechanical toughness to the hydrogel. Samples dialyzed in 6 M potassium hydroxide solution did not show such cellular structure, as in the case of as-prepared samples.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jinnai, H., Higuchi, T., Zhuge, X., Kumamoto, A., Batenburg, K.J., and Ikuhara, Y.: Three-dimensional visualization and characterization of polymeric self-assemblies by transmission electron microtomography. Acc. Chem. Res. 50, 1293 (2017).Google Scholar
2.Chung, H-J., Ohno, K., Fukuda, T., and Composto, R.J.: Self-regulated structures in nanocomposites by directed nanoparticle assembly. Nano Lett. 5, 1878 (2005).Google Scholar
3.Beers, K.M. and Balsara, N.P.: Design of cluster-free polymer electrolyte membranes and implications on proton conductivity. ACS Macro Lett. 1, 1155 (2012).Google Scholar
4.Krogstad, D.V., Choi, S-H., Lynd, N.A., Audus, D.J., Perry, S.L., Gopez, J.D., Hawker, C.J., Kramer, E.J., and Tirrell, M.V.: Small angle neutron scattering study of complex coacervate micelles and hydrogels formed from ionic diblock and triblock copolymers. J. Phys. Chem. B 118, 13011 (2014).Google Scholar
5.Lolla, D., Gorse, J., Kisielowski, C., Miao, J., Taylor, P.L., Chase, G.G., and Reneker, D.H.: Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy. Nanoscale 8, 120 (2016).Google Scholar
6.Shibayama, M.: Structure-mechanical property relationship of tough hydrogels. Soft Matter 8, 8030 (2012).Google Scholar
7.Sierra-Martin, B., Retama, J.R., Laurenti, M., Fernández Barbero, A., and López Cabarcos, E.: Structure and polymer dynamics within pnipam-based microgel particles. Adv. Colloid Interface Sci. 205, 113 (2014).Google Scholar
8.Trappmann, B., Gautrot, J.E., Connelly, J.T., Strange, D.G.T., Li, Y., Oyen, M.L., Cohen Stuart, M.A., Boehm, H., Li, B., Vogel, V., Spatz, J.P., Watt, F.M., and Huck, W.T.S.: Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 11, 642 (2012).Google Scholar
9.Yuan, H., Xu, J., van Dam, E.P., Giubertoni, G., Rezus, Y.L.A., Hammink, R., Bakker, H.J., Zhan, Y., Rowan, A.E., Xing, C., and Kouwer, P.H.J.: Strategies to increase the thermal stability of truly biomimetic hydrogels: combining hydrophobicity and directed hydrogen bonding. Macromolecules 50, 9058 (2017).Google Scholar
10.Zavgorodnya, O., Carmona-Moran, C.A., Kozlovskaya, V., Liu, F., Wick, T.M., and Kharlampieva, E.: Temperature-responsive nanogel multilayers of poly(n-vinylcaprolactam) for topical drug delivery. J. Colloid Interface Sci. 506, 589 (2017).Google Scholar
11.Hamngren Blomqvist, C., Gebäck, T., Altskär, A., Hermansson, A.M., Gustafsson, S., Lorén, N., and Olsson, E.: Interconnectivity imaged in three dimensions: nano-particulate silica-hydrogel structure revealed using electron tomography. Micron 100, 91 (2017).Google Scholar
12.Dobrynin, A.V., Colby, R.H., and Rubinstein, M.: Polyampholytes. J. Polym. Sci. Part B Polym. Phys. 42, 3513 (2004).Google Scholar
13.Kudaibergenov, S.E.: Recent advances in the study of synthetic polyampholytes in solutions. Adv. Polym. Sci. 114, 115 (1999).Google Scholar
14.Ihsan, A.B., Sun, T.L., Kurokawa, T., Karobi, S.N., Nakajima, T., Nonoyama, T., Roy, C.K., Luo, F., and Gong, J.P.: Self-healing behaviors of tough polyampholyte hydrogels. Macromolecules 49, 4245 (2016).Google Scholar
15.Niskanen, J. and Tenhu, H.: How to manipulate the upper critical solution temperature (Ucst)? Polym. Chem. 8, 220 (2017).Google Scholar
16.Li, X., Liu, L., Wang, X., Ok, Y.S., Elliott, J.A.W., Chang, S.X., and Chung, H-J.: Flexible and self-healing aqueous supercapacitors for low temperature applications: polyampholyte gel electrolytes with biochar electrodes. Sci. Rep. 7, 1685 (2017).Google Scholar
17.La, T-G., Li, X., Kumar, A., Fu, Y., Yang, S., and Chung, H-J.: Highly flexible, multipixelated thermosensitive smart windows made of tough hydrogels. ACS Appl. Mater. Interfaces 9, 33100 (2017).Google Scholar
18.Higgs, P.G. and Joanny, J.F.: Theory of polyampholyte solutions. Chem. Phys. 94, 1543 (1991).Google Scholar
19.Nisato, G., Munch, J., and Candau, S.: Swelling, structure, and elasticity of polyampholyte hydrogels. Langmuir 15, 4236 (1999).Google Scholar
20.Li, X., Charaya, H., Bernard, G.M., Elliott, J.A.W., Michaelis, V.K., Lee, B., and Chung, H-J.: Low-temperature ionic conductivity enhanced by disrupted ice formation in polyampholyte hydrogels. Macromolecules 51, 2723 (2018).Google Scholar
21.Ihsan, A.B., Sun, T.L., Kuroda, S., Haque, M.A., Kurokawa, T., Nakajima, T., and Gong, J.P.: A phase diagram of neutral polyampholyte – from solution to tough hydrogel. J. Mater. Chem. B 1, 4555 (2013).Google Scholar
22.Sun, T.L., Kurokawa, T., Kuroda, S., Ihsan, A.B., Akasaki, T., Sato, K., Haque, H.A., Nakajima, T., and Gong, J.P.: Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12, 932 (2013).Google Scholar
23.Egerton, T., Li, P., and Malac, M.: Radiation damage in the tem and sem. Micron 35, 399 (2004).Google Scholar
24.Grubb, D.: Radiation damage and electron microscopy of organic polymers. J. Mater. Sci. 9, 1715 (1974).Google Scholar
25.Michler, G. and Godehardt, R.: Electron Microscopy of Polymers (Springer-Verlag, Berlin, Heidelberg, 2008).Google Scholar
26.Hunt, J.N., Feldman, K.E., Lynd, N.A., Deek, J., Campos, L.M., Spruell, J.M., Hernandez, B.M., Kramer, E.J., and Hawker, C.J.: Tunable, high modulus hydrogels driven by ionic coacervation. Adv. Mater. 23, 2327 (2011).Google Scholar
27.MacKnight, W., Taggart, W., and Stein, R.: A model for the structure of ionomers. J. Polym. Sci. Polym. Symp. 45, 113 (1974).Google Scholar
28.Gierke, T., Munn, G., and Wilson, F.: The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies. J. Polym. Sci. Polym. Phys. Ed. 19, 1687 (1981).Google Scholar
29.Kumar, R. and Fredrickson, G.H.: Theory of polyzwitterion conformations. J. Chem. Phys. 131, 104901 (2009).Google Scholar
30.Deek, J., Chung, P.J., Kayser, J., Bausch, A.R., and Safinya, C.R.: Neurofilament sidearms modulate parallel and crossed-filament orientations inducing nematic to isotropic and re-entrant birefringent hydrogels. Nat. Commun. 4, 2224 (2013).Google Scholar
31.Sun, J-Y., Zhao, X., Illeperuma, W.R., Chaudhuri, O., Oh, K.H., Mooney, D.J., Vlassak, J.J., and Suo, Z.: Highly stretchable and tough hydrogels. Nature 489, 133 (2012).Google Scholar
Supplementary material: File

Li et al. supplementary material

Li et al. supplementary material 1

Download Li et al. supplementary material(File)
File 139 KB