Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T10:46:53.729Z Has data issue: false hasContentIssue false

Crystallization mechanism and kinetics of Cr2Ge2Te6 phase change material

Published online by Cambridge University Press:  23 August 2018

S. Hatayama
Affiliation:
Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba-yama, Sendai 980-8579, Japan
Y. Sutou*
Affiliation:
Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba-yama, Sendai 980-8579, Japan
D. Ando
Affiliation:
Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba-yama, Sendai 980-8579, Japan
J. Koike
Affiliation:
Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba-yama, Sendai 980-8579, Japan
*
Address all correspondence to Y. Sutou at [email protected]
Get access

Abstract

The crystallization mechanism and kinetics of Cr2Ge2Te6 (CrGT) films were investigated by differential scanning calorimetry. The average Avrami exponent (na) analysis indicated that CrGT exhibits a growth-dominant crystallization in the range of heating rate (β) of 10–50°C/min. In comparison, Ge2Sb2Te5 (GST) showed a nucleation-dominant crystallization. The na of CrGT was about 3, and was majorly independent of β. The na of GST decreased with an increasing β, which asymptotically approached a value of around 3. The kinetic constant of CrGT was evaluated to be almost the same with that of GST, indicating that CrGT undergoes fast crystallization.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Burr, G.W., Kurdi, B.N., Scott, J.C., Lam, C.H., Gopalakrishnan, K., and Shenoy, R.S.: Overview of candidate device technologies for storage-class memory. IBM J. Res. & Dev. 52, 449 (2008).Google Scholar
2.Wuttig, M. and Yamada, N.: Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824 (2007).Google Scholar
3.Wong, H.-S.P., Raoux, S., Kim, S., Liang, J., Reifenberg, J.P., Rajendran, B., Asheghi, M., and Goodson, K.E.: Phase change memory. Proc. IEEE 98, 2201 (2010).Google Scholar
4.Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., and Takao, M.: Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849 (1991).Google Scholar
5.Lacaita, A.L.: Phase change memories: State-of-the-art, challenges and perspectives. Solid-State Electron. 50, 24 (2006).Google Scholar
6.Hatayama, S., Sutou, Y., Shindo, S., Saito, Y., Song, Y.-H., Ando, D., and Koike, J.: Inverse resistance change Cr2Ge2Te6-based PCRAM enabling ultralow-energy amorphization. ACS Appl. Mater. Interfaces 10, 2725 (2018).Google Scholar
7.Ohshima, N.: Crystallization of germanium-antimony-tellurium amorphous thin film sandwiched between various dielectric protective films. J. Appl. Phys. 79, 8357 (1996).Google Scholar
8.González-Hernández, J., Prokhorov, E.F., Vorobiev, Y.V., Morales-Sánchez, E., Mendoza-Galván, A., Kostylev, S.A., Gorobets, Y.I., Zakharchenko, V.N., and Zakharchenko, R.V.: Mechanism of the isotermic amorphous-to-crystalline phase transition in Ge:Sb:Te ternary alloys. J. Vac. Sci. Technol. A 19, 1623 (2001).Google Scholar
9.Orava, J., Greer, A.L., Gholipour, B., Hewak, D.W., and Smith, C.E.: Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat. Mater. 11, 279 (2012).Google Scholar
10.Henderson, D.W.: Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. J. Non-Cryst. Solids 30, 301 (1979).Google Scholar
11.Ozawa, T.: A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38, 1881 (1965).Google Scholar
12.Ozawa, T.: Kinetic analysis of derivative curves in thermal analysis. J. Therm. Anal. 2, 301 (1970).Google Scholar
13.Sutou, Y., Kamada, T., Sumiya, M., Saito, Y., and Koike, J.: Crystallization process and thermal stability of Ge1Cu2Te3 amorphous thin films for use as phase change materials. Acta Mater. 60, 872 (2012).Google Scholar
14.Lu, W., Yan, B., and Huang, W.: Complex primary crystallization kinetics of amorphous Finemet alloy. J. Non-Cryst. Solids 351, 3320 (2005).Google Scholar
15.Ranganathan, S. and Heimendahl, M.V.: The three activation energies with isothermal transformations: applications to metallic glass. J. Mater. Sci. 16, 2401 (1981).Google Scholar
16.Ramanan, V.R.V. and Fish, G.E.: Crystallization kinetics in Fe-B-Si metallic glasses. J. Appl. Phys. 53, 2273 (1982).Google Scholar
17.Kelton, K.F., Greer, A.L., and Thompson, C.V.: Transient nucleation in condensed systems. J. Chem. Phys. 79, 6261 (1983).Google Scholar
18.Hurst, T., Horie, M., and Khulbe, P.K.: Crystallization of growth-dominant eutectic phase-change materials. Optical Data 7779 (2000).Google Scholar
19.Nishi, Y., Kando, H., and Terao, M.: Simulation of recrystallization in phase-change recording materials. Jpn. J. Appl. Phys. 41, 631 (2002).Google Scholar
20.Augis, J.A., and Bennett, J.E.: Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J. Therm. Anal. 13, 283 (1978).Google Scholar
21.Marseglia, E.A.: Kinetic theory of crystallization of amorphous materials. J. Non-Cryst. Solids 41, 31 (1980).Google Scholar
22.Gao, Y.Q., and Wang, W.: On the activation energy of crystallization in metallic glass. J. Non-Cryst. Solids 81, 129 (1986).Google Scholar
23.Burr, G.W., Breitwisch, M.J., Franceschini, M., Garetto, D., Gopalakrishnan, K., Jackson, B., Kurdi, B., Lam, C., Lastras, L.A., Padilla, A., Rajendran, B., Raoux, S., and Shenoy, R.S.: Phase change memory technology. J. Vac. Sci. Technol. B 28, 223 (2010).Google Scholar
24.Cheng, H.-Y., Kao, K.-F., Lee, C.-M., and Chin, T.-S.: Crystallization kinetics of Ga-Sb-Te films for phase change memory. Thin Solid Films 516, 5513 (2008).Google Scholar
25.Kasyap, S., Prajapati, S., and Pratap, A.: Heating rate and composition dependence of crystallization temperature of cu-based metallic glass. Adv. Mater. Res. 1141, 156 (2016).Google Scholar