Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-30T10:29:08.274Z Has data issue: false hasContentIssue false

Correlation between strain-rate sensitivity and viscous properties derived from dynamic nanoindentation of ultrafine-grained Al–Zn alloys

Published online by Cambridge University Press:  18 December 2018

Nguyen Q. Chinh*
Affiliation:
Department of Materials Physics, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/A., Hungary
Tamás Csanádi
Affiliation:
Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04353 Košice, Slovak Republic
Jenő Gubicza
Affiliation:
Department of Materials Physics, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/A., Hungary
Ruslan Z. Valiev
Affiliation:
Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12 K. Marx str., Ufa 450000, Russia Laboratory for Mechanics of Bulk Nanostructured Materials, Saint Petersburg State University, 28 Universitetsky pr., Peterhof, Saint Petersburg, 198504, Russia
*
Address all correspondence to Nguyen Q. Chinh at [email protected]
Get access

Abstract

The relationship between the oscillatory force and the depth-response during dynamic indentation was analyzed mathematically and investigated experimentally in ultrafine-grained Al–Zn alloys processed by high-pressure torsion. We have shown for the first time that the phase shift between the local oscillatory force and depth signal, caused by the internal friction, is correlated to the strain-rate sensitivity, which is a key parameter indicating the ductility of materials. This correlation enables a new application of dynamic nanoindentation for studying the rate-dependent deformation-mechanisms of materials from a novel aspect.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Zhilyaev, A.P. and Langdon, T.G.: Using high-pressure torsion for metal processing: fundamentals and applications. Prog. Mater. Sci. 53, 893 (2008).Google Scholar
2.Valiev, R.Z.: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511 (2004).Google Scholar
3.Straumal, B.B., Sauvage, X., Baretzky, B., Mazilkin, A.A., and Valiev, R.Z.: Grain boundary films in Al–Zn alloys after high pressure torsion. Scripta Mater. 70, 59 (2014).Google Scholar
4.Valiev, R.Z., Murashkin, M.Y., Kilmametov, A., Straumal, B.B., Chinh, N.Q., and Langdon, T.G.: Unusual super-ductility at room temperature in an ultrafine-grained aluminum alloy. J. Mater. Sci. 45, 4718 (2010).Google Scholar
5.Chinh, N.Q., Győri, T., Valiev, R.Z., Szommer, P., Varga, G., Havancsák, K., and Langdon, T.G.: Observations of unique plastic behavior in micro-pillars of an ultrafine-grained alloy. MRS Commun. 2, 7578 (2012).Google Scholar
6.Chinh, N.Q., Valiev, R.Z., Sauvage, X., Varga, G., Havancsák, K., Kawasaki, M., Straumal, B.B., and Langdon, T.G.: Grain boundary phenomena in an ultrafine-grained Al–Zn alloy with improved mechanical behavior for micro-devices. Adv. Eng. Mater. 16, 1000 (2014).Google Scholar
7.Bobruk, E.V., Sauvage, X., Enikeev, N.A., Straumal, B.B., and Valiev, R.Z.: Mechanical behavior of ultrafine-grained Al-5Zn, Al-10Zn, Al-30Zn alloys. Rev. Adv. Mater. Sci. 43, 45 (2015).Google Scholar
8.Sauvage, X., Murashkin, M.Y., Straumal, B.B., Bobruk, E.V., and Valiev, R.Z.: Ultrafine grained structures resulting from SPD-induced phase transformation in Al–Zn alloys. Adv. Eng. Mater. 17, 1821 (2015).Google Scholar
9.Alhamidi, A., Edalati, K., Horita, Z., Hirosawa, S., Matsuda, K., and Terada, D.: Softening by severe plastic deformation and hardening by annealing of aluminum–zinc alloy: Significance of elemental and spinodal decompositions. Mater. Sci. Eng. A 610, 17 (2014).Google Scholar
10.Chinh, N.Q., Csanádi, T., Győri, T., Valiev, R.Z., Straumal, B.B., Kawasaki, M., and Langdon, T.G.: Strain rate sensitivity studies in an ultrafine-grained Al-30 wt.% Zn alloy using micro- and nanoindentation. Mat. Sci. Eng. A 543, 117 (2012).Google Scholar
11.Borodachenkova, M.V., Barlat, F., Wen, W., Bastos, A., and Gracio, J.J.: A microstructure-based model for describing the material properties of Al–Zn alloys during high pressure torsion. Int. J. Plast. 68, 150 (2015).Google Scholar
12.Chinh, N.Q., Jenei, P., Gubicza, J., Bobruk, E.V., and Valiev, R.Z.: Influence of Zn content on the microstructure and mechanical performance of ultrafine-grained Al–Zn alloys processed by high-pressure torsion. Mater. Lett. 186, 334 (2017).Google Scholar
13.Jin, M., Minor, A.M., Stach, E.A., and Morris, J.W. Jr.: Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 52, 5381 (2004).Google Scholar
14.Tillmann, W., Klusemann, B., Nebel, J., and Svendsen, B.: Analysis of the mechanical properties of an arc-sprayed WC-FeCSiMn coating: nanoindentation and simulation. J. Therm. Spray Technol. 20, 328 (2011).Google Scholar
15.Berasategui, E.G. and Page, T.F.: The contact response of thin SiC-coated silicon systems-characterisation by nanoindentation. Surf. Coat. Technol. 163–164, 491 (2003).Google Scholar
16.Pharr, G.M., Oliver, W.C., and Clarke, D.R.: Hysteresis and discontinuity in the indentation load-displacement behavior of silicon. Scripta Metall. 23, 1949 (1989).Google Scholar
17.Schuh, C.A. and Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).Google Scholar
18.Choi, I.-C., Kim, Y.-J., Ahn, B., Kawasaki, M., Langdon, T.G., and Jang, J.-I.: Evolution of plasticity, strain-rate sensitivity and the underlying deformation mechanism in Zn–22% Al during high-pressure torsion. Scripta Mater. 75, 102 (2014).Google Scholar
19.Liu, Y., Hay, J., Wang, H., and Zhang, X.: A new method for reliable determination of strain-rate sensitivity of low-dimensional metallic materials by using nanoindentation. Scripta Mater. 77, 5 (2014).Google Scholar
20.Maier, V., Durst, K., Mueller, J., Backes, B., Höppel, H.W., and Göken, M.: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26, 1421 (2011).Google Scholar
21.Chinh, N.Q. and Szommer, P.: Mathematical description of indentation creep and its application for the determination of strain rate sensitivity. Mater. Sci. Eng. A 611, 333 (2014).Google Scholar
22.Durst, K. and Maier, V.: Dynamic nanoindentation testing for studying thermally activated processes from single to nanocrystalline metals. Curr. Opin. Solid State Mater. Sci. 19, 340 (2015).Google Scholar
23.Merle, B., Maier-Kiener, V., and Pharr, G.M.: Influence of modulus-to-hardness ratio and harmonic parameters on continuous stiffness measurement during nanoindentation. Acta Mater. 134, 167 (2017).Google Scholar
24.Hay, J., Agee, P., and Herbert, E.: Continuous stiffness measurement during instrumented indentation testing. Exp. Technol. 34, 86 (2010).Google Scholar
25.Fischer-Crips, A.C.: Handbook, “IBIS Uncovered”, Fischer-Crips Laboratories Pty Ltd., P.O. Box 9, Forestville NSW 2087 Australia. (2011).Google Scholar
26.Herbert, E.G., Oliver, W.C., and Pharr, G.M.: Nanoindentation and the dynamic characterization of viscoelastic solids. J. Phys. D: Appl. Phys. 41, 074021 (2008).Google Scholar
27.Woodford, D.A.: Strain rate sensitivity as a measure of ductility. Trans. ASM 62, 291 (1969).Google Scholar
28.Chinh, N.Q., Csanádi, T., Gubicza, J., Valiev, R.Z., Straumal, B.B., and Langdon, T.G.: The effect of grain-boundary sliding and strain rate sensitivity on the ductility of ultrafine-grained materials. Mater. Sci. Forum 667–669, 677 (2011).Google Scholar