Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T07:35:07.087Z Has data issue: false hasContentIssue false

Commercial carbon anode material surface-modified by spinel lithium titanate for fast lithium-ion interaction

Published online by Cambridge University Press:  16 December 2019

Lung-Hao Hu*
Affiliation:
Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung804, Taiwan
*
Address all correspondence to Lung-Hao Hu at [email protected] and [email protected]
Get access

Abstract

This research utilizes anatase TiO2 incorporated with lithium salt via a simple wet physical method to surface-modified the commercial graphite to form the lithium titanate/graphite composite coated with an amorphous carbon layer on its surface (the double core–shell structure) to enhance its surface conductivity. This double core–shell structure provides a stable specific capacity about 280 mAh/g under the high current density, 2.25 A/g with 15% capacity retention decay. Its intercalation potential is below 1 V that is much lower than that of 1.55 V, the intercalation potential of spinel Li4Ti5O12, to make higher power and energy density for a full cell.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Simon, P. and Gogotsi, Y.: Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008).CrossRefGoogle ScholarPubMed
2.Dunn, B., Kamath, H., and Tarascon, J.: Electrical energy storage for the grid: a battery of choices. Science 334, 928 (2011).CrossRefGoogle ScholarPubMed
3.Zhou, Z., Benbouzida, M., Charpentier, J.F., Scuiller, F., and Tang, T.: A review of energy storage technologies for marine current energy systems. Renew. Sustain. Energy Rev. 18, 390 (2013).CrossRefGoogle Scholar
4.Flandrois, S. and Simon, B.: Carbon materials for lithium-ion rechargeable batteries. Carbon 37, 165 (1999).CrossRefGoogle Scholar
5.Wu, Y.P., Rahm, E., and Holze, R.: Carbon anode materials for lithium ion batteries. J. Power Sources 114, 228 (2003).CrossRefGoogle Scholar
6.Read, J., Foster, D., Wolfenstine, J., and Behl, W.: SnO2-carbon composites for lithium-ion battery anodes. J. Power Sources 96, 277 (2001).CrossRefGoogle Scholar
7.Yi, T.F., Jiang, L., Shu, J., Yue, C.B., Zhu, R., and Qiao, H.: Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. J. Phys. Chem. Solids 71, 1236 (2010).CrossRefGoogle Scholar
8.Guerfi, A., Sévigny, S., Lagacé, M., Hovington, P., Kinoshita, K., and Zaghib, K.: Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators. J. Power Sources 88, 119 (2003).Google Scholar
9.Sorensen, E.M., Barry, S.J., Jung, H., Rondinelli, J.M., Vaughey, J.T., and Poeppelmeier, K.R.: Three-dimensionally ordered macroporous Li4Ti5O12: effect of wall structure on electrochemical properties. Chem. Mater. 18, 48 (2006).Google Scholar
10.Casas, C. and Li, W.: A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 74, 208 (2012).Google Scholar
11.Kar, T., Pattanayak, J., and Scheiner, S.: Insertion of lithium ions into carbon nanotubes: an ab initio study. J. Phys. Chem. A 105, 10397 (2001).CrossRefGoogle Scholar
12.Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X., Huggins, R.A., and Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotech. 3, 31 (2008).CrossRefGoogle ScholarPubMed
13.Ramakrishna, S., Fujihara, K., Teo, W.E., Lim, T.C., and Ma, Z.: An Introduction to Electrospinning and Nanofibers (World Scientific, Singapore, 2005).CrossRefGoogle Scholar
14.Yao, F. and Cojocaru, C.S.: Carbon-Based Nanomaterials as an Anode for Lithium Ion Battery. Micro and nanotechnologies/Microelectronics, Ecole Polytechnique X, 2013. English. pastel-00967913. https://pastel.archives-ouvertes.fr/pastel-00967913.Google Scholar
15.Lian, P., Zhu, X., Liang, S., Li, Z., Yang, W., and Wang, H.: Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta 55, 3909 (2010).CrossRefGoogle Scholar
16.Wang, G.J., Gao, J., Fu, L.J., Zhao, N.H., Wu, Y.P., and Takamura, T.: Preparation and characteristic of carbon-coated Li4Ti5O12 anode material. J. Power Sources 174, 1109 (2007).CrossRefGoogle Scholar
17.Verde, M.G., Baggetto, L., Balke, N., Veith, G.M., Seo, J., Wang, Z., and Meng, Y.S.: Elucidating the phase transformation of Li4Ti5O12 lithiation at the nanoscale. ACS Nano 10, 4312 (2016).CrossRefGoogle ScholarPubMed
18.Peled, E. and Menkin, S.: Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703 (2017).CrossRefGoogle Scholar
19.Mahmoud, A., Amarilla, J.M., Lasri, K., and Saadoune, I.: Influence of the synthesis method on the electrochemical properties of the Li4Ti5O12 spinel in Li-half and Li-ion full-cells. A systematic comparison. Electrochim. Acta 93, 163 (2013).CrossRefGoogle Scholar
20.Wagemaker, M. and Mulder, F.M.: Properties and promises of nanosized insertion materials for Li-Ion batteries. Acc. Chem. Res. 46, 1206 (2013).CrossRefGoogle ScholarPubMed
21.Li, X. and Wang, C.: Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application. J. Mater. Chem. A 1, 165 (2013).CrossRefGoogle Scholar
22.Martha, S.K., Haik, O., Borgel, V., Zinigrad, E., Exnar, I., Drezen, T., Miners, J.H., and Aurbach, D.: Li4Ti5O12/LiMnPO4 lithium-ion battery systems for load leveling application. J. Electrochem. Soc. 158, A790 (2011).CrossRefGoogle Scholar
23.Zhu, G.N., Chen, L., Wang, Y.G., Wang, C.X., Che, R.C., and Xia, Y.Y.: Binary Li4Ti5O12-Li2Ti3O7 nanocomposite as an anode material for Li-Ion batteries. Adv. Funct. Mater. 23, 640 (2013).CrossRefGoogle Scholar
24.Cheng, Q., Tang, S., Liang, J., Zhao, J., Lan, Q., Liu, C., and Cao, Y.C.: High rate performance of the carbon encapsulated Li4Ti5O12 for lithium ion battery. Results Phys. 7, 810 (2017).CrossRefGoogle Scholar
25.Wang, J., Liu, X.-M., Yang, H., and Shen, X.D.: Characterization and electrochemical properties of carbon-coated Li4Ti5O12 prepared by a citric acid sol–gel method. J. Alloys Compd. 509, 712 (2011).CrossRefGoogle Scholar
26.Lin, J.Y., Hsu, C.C., Ho, H.P., and Wu, S.h: Sol–gel synthesis of aluminum doped lithium titanate anode material for lithium ion batteries. Electrochim. Acta 87, 126 (2013).CrossRefGoogle Scholar
27.Xia, Q., Xu, A., Du, L., Yan, Y., and Wu, S.: High-rate, long-term performance of LTO-pillared silicon/carbon composites for lithium-ion batteries anode under high temperature. J. Alloys Compd. 800, 50 (2019).CrossRefGoogle Scholar