Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T05:36:11.494Z Has data issue: false hasContentIssue false

Carbyne: from the elusive allotrope to stable carbon atom wires

Published online by Cambridge University Press:  05 April 2018

C.S. Casari*
Affiliation:
Department of Energy, Politecnico di Milano via Ponzio 34/3, I-20133 Milano, Italy
A. Milani
Affiliation:
Department of Energy, Politecnico di Milano via Ponzio 34/3, I-20133 Milano, Italy
*
Address all correspondence to C.S. Casari at [email protected]
Get access

Abstract

Besides graphite and diamond, the solid allotropes of carbon in sp2 and sp3 hybridization, the possible existence of a third allotrope based on the sp-carbon linear chain, the carbyne, has stimulated researchers for a long time. The advent of fullerenes, nanotubes, and graphene has opened new opportunities and nurtured the interest in novel carbon allotropes, including linear structures. The efforts made in this direction produced a number of interesting sp-hybridized carbon molecules and nanostructures in the form of carbon-atom wires. Here we discuss some of the new perspectives opened by the recent advancements in the research on sp-carbon systems.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hirsch, A.: The era of carbon allotropes. Nat. Mater. 9, 868 (2010).Google Scholar
2.Baughman, R.H.: Dangerously seeking linear carbon. Science 312, 1009 (2006).CrossRefGoogle ScholarPubMed
3.Casari, C.S., Tommasini, M., Tykwinski, R.R., and Milani, A.: Carbon-atom wires: 1-D systems with tunable properties. Nanoscale 8, 4414 (2016).Google Scholar
4.Banhart, F.: Chains of carbon atoms: a vision or a new nanomaterial? Beilstein J. Nanotechnol. 6, 559 (2015).CrossRefGoogle ScholarPubMed
5.Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., and Smalley, R.E.: C60: buckminsterfullerene. Nature 318, 162 (1985).CrossRefGoogle Scholar
6.Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, C.K., and Heeger, A.J.: Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 0, 578 (1977).Google Scholar
7.Geim, A.K. and Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007).Google Scholar
8.Kroto, H.: Symmetry, space, stars and C60. Rev. Mod. Phys. 69, 703 (1997).CrossRefGoogle Scholar
9.Jones, R.O. and Seifert, G.: Structure and bonding in carbon clusters C14 to C24: chains, rings, bowls, plates, and cages. Phys. Rev. Lett. 79, 443 (1997).Google Scholar
10.Van Orden, A. and Saykally, R.J.: Small carbon clusters: spectroscopy, structure, and energetics. Chem. Rev. 98, 2313 (1998).Google Scholar
11.Weltner, W. and Van Zee, R.J.: Carbon molecules, ions, and clusters. Chem. Rev. 89, 1713 (1989).Google Scholar
12.Cataldo, F.: Polyynes: Synthesis, Properties and Applications (CRC, Boca Raton, FL, 2005), p. 506.Google Scholar
13.Heimann, R.B., Evsyukov, S.E., and Kavan, L.: Carbyne and Carbynoid Structures (Kluwer Academic, Dordrecht, 1999), p. 452.Google Scholar
14.Milani, A., Tommasini, M., Russo, V., Li Bassi, A., Lucotti, A., Cataldo, F., and Casari, C.S.: Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires. Beilstein J. Nanotechnol. 6, 480 (2015).Google Scholar
15.Chalifoux, W.A. and Tykwinski, R.R.: Synthesis of polyynes to model the sp-carbon allotrope carbyne. Nat. Chem. 2, 967 (2010).CrossRefGoogle ScholarPubMed
16.Davenport, M.: Contention Over Carbyne. Chem. Eng. News 93, 46 (2015).Google Scholar
17.Heimann, R.B., Kleiman, J., and Salansky, N.M.: A unified structural approach to linear carbon polytypes. Nature 306, 164 (1983).Google Scholar
18.Kasatochkin, V.I., Melnichenko, V.M., and Elizen, V.M.: Electron diffraction by single crystals of carbyne. Polym. Sci. U.S.S.R. 17, 2167 (1975).Google Scholar
19.Buntov, E.A., Zatsepin, A.F., Guseva, M.B., and Ponosov, Y.S.: 2D-ordered kinked carbyne chains: DFT modeling and Raman characterization. Carbon N. Y. 117, 271 (2017).CrossRefGoogle Scholar
20.Kudryavtsev, Y., Evsyukov, S., Guseva, M., Babaev, V., and Khvostov, V.: Oriented carbon layers. Carbon N. Y. 30, 213 (1992).Google Scholar
21.Babaev, V., Guseva, M., Novikov, N.D., Khvostov, V.V., and Flood, P.: Carbon material with highly ordered linear-chain structure. In Polyynes—Synthesis, Properties, Applications. Cataldo, F. ed. (CRC, Boca Raton, FL, 2005), p. 219.Google Scholar
22.Pan, B.T., Xiao, J., Li, J.L., Liu, P., Wang, C.X., and Yang, G.W.: Carbyne with finite length: the one-dimensional sp carbon. Sci. Adv. 1, 1500857 (2015).Google Scholar
23.Tarakeshwar, P., Buseck, P.R., and Kroto, H.W.: Pseudocarbynes: Charge-Stabilized Carbon Chains. J. Phys. Chem. Lett. 7(9), 1675 (2016).Google Scholar
24.Shi, L., Rohringer, P., Suenaga, K., Niimi, Y., Kotakoski, J., Meyer, J.C., Peterlik, H., Wanko, M., Cahangirov, S., Rubio, A., Lapin, Z.J., Novotny, L., Ayala, P., and Pichler, T.: Confined linear carbon chains as a route to bulk carbyne. Nat. Mater. 15, 634 (2016).Google Scholar
25.Yang, S. and Kertesz, M.: Linear Cn clusters: are they acetylenic or cumulenic? J. Phys. Chem. A 112, 146 (2008).Google Scholar
26.Sorokin, P.B., Lee, H., Yu Antipina, L., Singh, A.K., and Yakobson, B.I.: Calcium-decorated carbyne networks as hydrogen storage media. Nano Lett. 11, 2660 (2011).Google Scholar
27.Liu, M., Artyukhov, V.I., Lee, H., Xu, F., and Yakobson, B.I.: Carbyne from first principles: chain of C atoms, a nanorod or a nanorope. ACS Nano 7, 10075 (2013).Google Scholar
28.Wang, M. and Lin, S.: Ballistic: thermal transport in carbyne and cumulene with micron-scale spectral acoustic phonon mean free path. Sci. Rep. 5, 18122 (2015).Google Scholar
29.Zhu, Y., Bai, H., and Huang, Y.: Electronic property modulation of one-dimensional extended graphdiyne nanowires from a first-principle crystal orbital view. Chem. Open 5, 78 (2016).Google Scholar
30.Tongay, S., Senger, R.T., Dag, S., and Ciraci, S.: Ab-initio electron transport calculations of carbon based string structures. Phys. Rev. Lett. 93, 136404 (2004).Google Scholar
31.Tykwinski, R.R., Chalifoux, W., Eisler, S., Lucotti, A., Tommasini, M., Fazzi, D., Del Zoppo, M., and Zerbi, G.: Toward carbyne: synthesis and stability of really long polyynes. Pure Appl. Chem. 82, 891, (2010).CrossRefGoogle Scholar
32.Lang, N.D. and Avouris, P.: Oscillatory conductance of carbon-atom wires. Phys. Rev. Lett. 81, 3515 (1998).Google Scholar
33.Lang, N.D. and Avouris, P.: Carbon-atomwires: charge-transfer doping, voltage drop, and the effect of distortions. Phys. Rev. Lett. 84, 358 (2000).Google Scholar
34.Zanolli, Z., Onida, G., and Charlier, J.C.: Quantum spin transport in carbon chains. ACS Nano 4, 5174 (2010).Google Scholar
35.Milani, A., Tommasini, M., Del Zoppo, M., Castiglioni, C., and Zerbi, G.: Carbon nanowires: phonon and π-electron confinement. Phys. Rev. B 74, 153418 (2006).Google Scholar
36.Milani, A., Tommasini, M., and Zerbi, G.: Carbynes phonons: a tight binding force field. J. Chem. Phys. 128, 064501 (2008).Google Scholar
37.Milani, A., Tommasini, M., and Zerbi, G.: Connection among Raman frequencies, bond length alternation and energy gap in polyynes. J. Raman Spectrosc. 40, 1931 (2009).Google Scholar
38.Artyukhov, V.I., Liu, M., and Yakobson, B.I.: Mechanically induced metal–insulator transition in carbyne. Nano Lett. 14, 4224 (2014).Google Scholar
39.Wanko, M., Cahangirov, S., Shi, L., Rohringer, P., Lapin, Z.J., Novotny, L., Ayala, P., Pichler, T., and Rubio, A.: Polyyne electronic and vibrational properties under environmental interactions. Phys. Rev. B 94, 195422 (2016).Google Scholar
40.Casari, C.S., Giannuzzi, C.S., and Russo, V.: Carbon-atom wires produced by nanosecond pulsed laser deposition in a background gas. Carbon. N. Y. 104, 190 (2016).Google Scholar
41.Agarwal, N.R., Lucotti, A., Fazzi, D., Tommasini, M., Castiglioni, C., Chalifoux, W.A., and Tykwinski, R.R.: Structure and chain polarization of long polyynes investigated with infrared and Raman spectroscopy. J. Raman Spectrosc. 44, 1398 (2013).Google Scholar
42.Jarowski, P.D., Diederich, F., and Houk, K.N.: Butatrienes as extended alkenes: barriers to internal rotation and substitution effects on the stabilities of the ground states and transition states. J. Phys. Chem. A 110, 7237 (2006).CrossRefGoogle ScholarPubMed
43.Innocenti, F., Milani, A., and Castiglioni, C.: Can Raman spectroscopy detect cumulenic structures of linear carbon chains? J. Raman Spectrosc. 41, 226 (2010).Google Scholar
44.Prenzel, D., Kirschbaum, R.W., Chalifoux, W.A., McDonald, R., Ferguson, M.J., Drewello, T., and Tykwinski, R.R.: Polymerization of acetylene: polyynes, but not carbyne. Org. Chem. Front. 4, 668 (2017).Google Scholar
45.Wendinger, D. and Tykwinski, R.R.: Odd [n]Cumulenes (n = 3, 5, 7, 9): synthesis, characterization, and reactivity. Acc. Chem. Res. 50, 1468 (2017).CrossRefGoogle ScholarPubMed
46.Ravagnan, L., Siviero, F., Lenardi, C., Piseri, P., Barborini, E., Milani, P., Casari, C.S., Li Bassi, A., and Bottani, C.E.: Cluster-beam deposition and in situ characterization of carbyne-rich carbon films. Phys. Rev. Lett. 89, 285506 (2002).Google Scholar
47.Lucotti, A., Casari, C.S., Tommasini, M., Li Bassi, A., Fazzi, D., Russo, V., Del Zoppo, M., Castiglioni, C., Cataldo, F., Bottani, C.E., and Zerbi, G.: sp Carbon chain interaction with silver nanoparticles probed by Surface Enhanced Raman Scattering. Chem. Phys. Lett. 478, 45 (2009).Google Scholar
48.Casari, C.C., Li Bassi, A., Ravagnan, L., Siviero, F., Lenardi, C., Piseri, P., Bongiorno, G., Bottani, C.E., and Milani, P.: Chemical and thermal stability of carbyne-like structures in cluster-assembled carbon films. Phys. Rev. B 69, 075422 (2004).Google Scholar
49.Ravagnan, L., Piseri, P., Bruzzi, M., Miglio, S., Bongiorno, G., Baserga, A., Casari, C.S., Li Bassi, A., Lenardi, C., Yamaguchi, Y., Wakabayashi, T., Bottani, C.E., and Milani, P.: Influence of cumulenic chains on the vibrational and electronic properties of sp-sp2 amorphous carbon. Phys. Rev. Lett. 98, 216103 (2007).Google Scholar
50.Zhao, X., Ando, Y., Liu, Y., Jinno, M., and Suzuki, T.: Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube. Phys. Rev. Lett. 90, 187401 (2003).Google Scholar
51.Bettini, L.G., Della Foglia, F., Piseri, P., and Milani, P.: Interfacial properties of a carbyne-rich nanostructured carbon thin film in ionic liquid. Nanotechnology 27, 115403 (2016).CrossRefGoogle ScholarPubMed
52.Lucotti, A., Tommasini, M., Fazzi, D., Del Zoppo, M., Chalifoux, W.A., Ferguson, M.J., Zerbi, G., and Tykwinski, R.R.: Evidence for solution-state nonlinearity of sp-carbon chains based on IR and Raman spectroscopy: violation of mutual exclusion. J. Am. Chem. Soc. 131, 4239 (2009).CrossRefGoogle ScholarPubMed
53.Szafert, S. and Gladysz, J.A.: Carbon in one dimension: structural analysis of the higher conjugated polyynes. Chem. Rev. 103, 4175 (2003).CrossRefGoogle ScholarPubMed
54.Szafert, S. and Gladysz, J.A.: Update 1 of: carbon in one dimension: structural analysis of the higher conjugated polyynes. Chem. Rev. 106, PR1PR33 (2006).CrossRefGoogle ScholarPubMed
55.Neugebauer, T.S., Franz, M., Frankenberger, S., Tykwinski, R.R., and Drewello, T.: Laser desorption vs. electrospray of polyyne-threaded Rotaxanes: preventing covalent cross-linking and promoting noncovalent aggregation. J. Chem. Phys. 148, 064308 (2018).Google Scholar
56.Milan, D.C., Krempe, M., Ismael, A.K., Movsisyan, L.D., Franz, M., Grace, I., Brooke, R.J., Schwarzacher, W., Higgins, S.J., Anderson, H.L., Lambert, C.J., Tykwinski, R.R., and Nichols, R.J.: The single-molecule electrical conductance of a rotaxane-hexayne supramolecular assembly. Nanoscale. 9, 355 (2017).Google Scholar
57.Franz, M., Januszewski, J.A., Wendinger, D., Neiss, C., Movsisyan, L.D., Hampel, F., Anderson, H.L., Gorling, A., and Tykwinski, R.R.: Cumulene Rotaxanes: stabilization and study of [9]cumulenes. Angew. Chem. Int. Ed. 54, 6645 (2015).Google Scholar
58.Movsisyan, L.D., Franz, M., Hampel, F., Thompson, A.L., Tykwinski, R.R., and Anderson, H.L.: Polyyne Rotaxanes: stabilization by encapsulation. J. Am. Chem. Soc. 138, 1366 (2016).Google Scholar
59.Movsisyan, L.D., Kondratuk, D.V., Franz, M., Thompson, A.L., Tykwinski, R.R., and Anderson, H.L.: Synthesis of polyyne Rotaxanes. Org. Lett. 14, 3424 (2012).Google Scholar
60.Weisbach, N., Baranova, Z., Gauthier, S., Reibenspies, J.H., and Gladysz, J.A.: A new type of insulated molecular wire: a rotaxane derived from a metal-capped conjugated tetrayne. Chem. Commun. 48, 7562 (2012).Google Scholar
61.Schrettl, S., Contal, E., Hoheisel, T.N., Fritzsche, M., Balog, S., Szilluweita, R., and Frauenrath, H.: Facile synthesis of oligoyne amphiphiles and their rotaxanes. Chem. Sci. 6, 564 (2015).CrossRefGoogle ScholarPubMed
62.Cataldo, F., Ravagnan, L., Cinquanta, E., Castelli, I.E., Manini, N., Onida, G., and Milani, P.: Synthesis, characterization, and modeling of naphthyl-terminated sp carbon chains: dinaphthylpolyynes. J. Phys. Chem. B 114, 14834 (2010).Google Scholar
63.Milani, A., Lucotti, A., Russo, V., Tommasini, M., Cataldo, F., Li Bassi, A., and Casari, C.S.: Charge transfer and vibrational structure of sp-hybridized carbon atomic wires probed by surface enhanced Raman spectroscopy. J. Phys. Chem. C 115, 12836 (2011).Google Scholar
64.Milani, A., Tommasini, M., Barbieri, V., Lucotti, A., Russo, V., Cataldo, F., and Casari, C.S.: Semiconductor-to-metal transition in carbon-atom wires driven by sp2 conjugated end groups. J. Phys. Chem. C 121, 10562 (2017).Google Scholar
65.Cataldo, F., Ursini, O., Milani, A., and Casari, C.S.: One-pot synthesis and characterization of polyynes end-capped by biphenyl groups (alpha, omega-biphenylpolyynes). Carbon. N. Y. 126, 232 (2018).Google Scholar
66.Cataldo, F., Ursini, O., Angelini, G., Tommasini, M., and Casari, C.S.: Simple synthesis of α, ω-Diarylpolyynes. Part 1: Diphenylpolyynes. J. Macromol. Sci. A 47, 1 (2010).Google Scholar
67.Jin, C., Lan, H., Peng, L., Suenaga, K., and Iijima, S.: Deriving carbon atomic chains from graphene. Phys. Rev. Lett. 102, 205501 (2009).Google Scholar
68.Rivelino, R., dos Santos, R.B., de Brito Mota, F., and Gueorguiev, G.K.: Conformational effects on structure, electron states, and Raman scattering properties of linear carbon chains terminated by graphene-like pieces. J. Phys. Chem. C 114, 16367 (2010).CrossRefGoogle Scholar
69.Januszewski, J.A., Wendinger, D., Methfessel, C.D., Hampel, F., and Tykwinski, R.R.: Synthesis and structure of tetraarylcumulenes: characterization of bond-length alternation versus molecule length. Angew. Chem., Int. Ed. 52, 1817 (2013).Google Scholar
70.Januszewski, J.A., and Tykwinski, R.R.: Synthesis and properties of long [n]cumulenes (n≥5). Chem. Soc. Rev. 43, 3184 (2014).Google Scholar
71.Tommasini, M., Milani, A., Fazzi, D., Lucotti, A., Castiglioni, C., Januszewski, J.A., Wendinger, D., and Tykwinski, R.R.: π-conjugation and end group effects in long cumulenes: Raman spectroscopy and DFT calculations. J. Phys. Chem. C 118, 26415 (2014).Google Scholar
72.Baughman, H., Eckhardt, H., and Kertesz, M.: Structure-property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms. J. Chem. Phys. 87, 6687 (1987).Google Scholar
73.Ivanovskii, A.L.: Graphynes and graphdyines. Prog. Solid State Chem. 41, 1 (2013).Google Scholar
74.Li, Y., Xu, L., Liu, H., and Li, Y.: Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem. Soc. Rev. 43, 2572 (2014).Google Scholar
75.Malko, D., Neiss, C., Viñes, F., and Görling, A.: Competition for graphene: graphynes with direction-dependent Dirac cones. Phys. Rev. Lett. 108, 086804 (2012).Google Scholar
76.Haley, M.M., Brand, S.C., and Pak, J.J.: Carbon networks based on Dehydrobenzoannulenes: synthesis of graphdiyne substructures. Angew. Chem. Int. Ed. 36, 835 (1997).Google Scholar
77.Wan, W.B., Brand, S.C., Pak, J.J., and Haley, M.M.: Synthesis of Expanded graphdiyne substructures. Chem. Eur. J. 6, 2044 (2000).Google Scholar
78.Haley, M.M.: Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures. Pure Appl. Chem. 80, 519 (2008).Google Scholar
79.Kehoe, J.M., Kiley, J.H., English, J.J., Johnson, C.A., Petersen, R.C., and Haley, M.M.: Carbon networks based on dehydrobenzoannulenes. 3. Synthesis of graphyne substructures. Org. Lett. 2, 969 (2000).Google Scholar
80.Diederich, F. and Kivala, M.: All-carbon scaffolds by rational design. Adv. Mater. 22, 803 (2010).Google Scholar
81.Cretu, O., Botello-Mendez, A.R., Janowska, I., Pham-Huu, C., Charlier, J.C., and Banhart, F.: Electrical transport measured in atomic carbon chains. Nano Lett. 13, 3487 (2013).Google Scholar
82.La Torre, A., Botello-Mendez, A., Baaziz, W., Charlier, J.C., and Banhart, F.: Strain-induced metal–semiconductor transition observed in atomic carbon chains. Nat. Commun. 6, 6636 (2015).Google Scholar
83.Romdhane, F.B., Adjizian, J.J., Charlier, J.C., and Banhart, F.: Electrical transport through atomic carbon chains: the role of contacts. Carbon N. Y. 122, 92 (2017).Google Scholar
84.Shi, L., Rohringer, P., Wanko, M., Rubio, A., Waßerroth, S., Reich, S., Cambré, S., Wenseleers, W., Ayala, P., and Pichler, T.: Electronic band gaps of confined linear carbon chains ranging from polyyne to carbyne. Phys. Rev. Mater. 1, 075601 (2017).Google Scholar
85.Sun, Q., Cai, L., Ma, H., Yuan, C., and Xu, W.: Dehalogenative Homocoupling of terminal Alkynyl bromides on Au(111): incorporation of acetylenic scaffolding into surface nanostructures. ACS Nano 10, 7023 (2016).Google Scholar
86.Sun, Q., Cai, L., Wang, S., Widmer, R., Ju, H., Zhu, J., Li, L., He, Y., Ruffieux, P., Fasel, R., and Xu, W.: Bottom-up synthesis of metalated carbine. J. Am. Chem. Soc. 138, 1106 (2016).Google Scholar
87.Sun, Q., Tran, B., Cai, L., Ma, H., Yu, X., Yuan, C., Stöhr, M., and Xu, W.: On-surface formation of cumulene by dehalogenative homocoupling of alkenyl gem-dibromides. Angew. Chem. Int. Ed. 56, 12165 (2017).Google Scholar
88.Ataca, C. and Ciraci, S.: Perpendicular growth of carbon chains on graphene from first-principles. Phys. Rev. B 83, 235417 (2011).Google Scholar
89.Pari, S., Cuellar, A., and Wong, B.M.: Structural and electronic properties of graphdiyne carbon nanotubes from large-scale DFT calculations. J. Phys. Chem. C 120, 18871 (2016).Google Scholar
90.Sundholm, D., Wirz, L.N., and Schwerdtfeger, P.: Novel hollow all-carbon structures. Nanoscale. 7, 15886 (2015).Google Scholar
91.Li, M., Wang, Z.K., Kang, T., Yang, Y., Gao, X., Hsu, C.S., Li, Y., and Liao, L.S.: Graphdiyne-modified cross-linkable fullerene as an efficient electron-transporting layer in organometal halide perovskite solar cells. Nano Energy 43, 47 (2018).Google Scholar
92.Long, M., Tang, L., Wang, D., Li, Y., and Shuai, Z.: Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions. ACS Nano 5, 2593 (2011).Google Scholar
93.Hu, F., Zeng, C., Long, R., Miao, Y., Wei, L., Xu, Q., and Min, W.: Supermultiplexed optical imaging and barcoding with engineered polyynes. Nat. Methods 15, 194 (2018).CrossRefGoogle ScholarPubMed
94.Li, Z., Smeu, M., Rives, A., Maraval, V., Chauvin, R., Ratner, M.A., and Borguet, E.: Towards graphyne molecular electronics. Nat. Commun. 6, 6321 (2015).Google Scholar