Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T07:47:29.010Z Has data issue: false hasContentIssue false

Boosting interfacial charge transfer for efficient water-splitting photoelectrodes: progress in bismuth vanadate photoanodes using various strategies

Published online by Cambridge University Press:  14 June 2018

Taemin Ludvic Kim
Affiliation:
Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
Min-Ju Choi
Affiliation:
Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
Ho Won Jang*
Affiliation:
Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
*
Address all correspondence to Ho Won Jang at [email protected]
Get access

Abstract

Bismuth vanadate (BiVO4) is regarded as a viable material for water oxidation due to various benefits such as visible light absorption, low production cost, and resistance to photocorrosion. Recently, numerous attempts have been adopted to improve the performance of BiVO4. In this work, we highlight the important strategies that have been made for improving the performance of the photoanode material, such as fabricating nanostructured electrode, controlling reacting facet, stacking with other materials, utilizing plasmonics, loading co-catalyst, and controlling the interfacial band bending with ferroelectrics. Taking advantage of the strategies, highly efficient BiVO4 photoelectrodes could be demonstrated. Finally, we discuss the perspective of BiVO4-based photoanodes.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

References

1.Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).Google Scholar
2.Bolton, J.R.: Solar photoproduction of hydrogen: a review. Sol. Energy 57, 37 (1996).Google Scholar
3.Khan, S.U.M. and Akikusa, J.: Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes. J. Phys. Chem. B 103, 7184 (1999).Google Scholar
4.Khan, S.U.M.: Stability and photoresponse of nanocrystalline n-TiO2 and n-TiO2/Mn2O3 thin film electrodes during water splitting reactions. J. Electrochem. Soc. 145, 89 (1998).Google Scholar
5.Akikusa, J. and Khan, S.U.M.: Photoelectrolysis of water to hydrogen in p-SiC/Pt and p-SiC/n-TiO2 cells. Int. J. Hydrogen Energy 27, 863 (2002).Google Scholar
6.Khaselev, O. and Turner, J.A.: A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425 (1998).Google Scholar
7.Licht, S., Wang, B., Mukerji, S., Soga, T., Umeno, M., and Tributsch, H.: Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J. Phys. Chem. B 104, 8920 (2000).Google Scholar
8.Khan, S.U.M., Al-Shahry, M., and Ingler, W.B.: Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243 (2002).Google Scholar
9.Song, J., Cha, J., Lee, M.G., Jeong, H.W., Seo, S., Yoo, J.A., Kim, T.L., Lee, J., No, H., Kim, D.H., Jeong, S.Y., An, H., Lee, B.H., Bark, C.W., Park, H., Jang, H.W., and Lee, S.: Template-engineered epitaxial BiVO4 photoanodes for efficient solar water splitting. J. Mater. Chem. A 5, 18831 (2017).Google Scholar
10.Song, J., Kim, T.L., Lee, J., Cho, S.Y., Cha, J., Jeong, S.Y., An, H., Kim, W.S., Jung, Y.-S., Park, J., Jung, G.Y., Kim, D.-Y., Jo, J.Y., Bu, S.D., Jang, H.W., and Lee, S.: Domain-engineered BiFeO3 thin-film photoanodes for highly enhanced ferroelectric solar water splitting. Nano Res. 11, 642 (2018).Google Scholar
11.Wang, W., Tadé, M.O., and Shao, Z.: Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 44, 5371 (2015).Google Scholar
12.Seh, Z.W., Kibsgaard, J., Dickens, C.F., Chorkendorff, I., Nørskov, J.K., and Jaramillo, T.F.: Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, eaad4998 (2017).Google Scholar
13.Dunn, S.: Hydrogen futures: toward a sustainable energy system. Int. J. Hydrogen Energy 27, 235 (2002).Google Scholar
14.Holladay, J.D., Hu, J., King, D.L., and Wang, Y.: An overview of hydrogen production technologies. Catal. Today 139, 244 (2009).Google Scholar
15.Rostrup-Nielsen, J.R. and Rostrup-Nielsen, T.: Large-scale hydrogen production. Cattech 6, 150 (2002).Google Scholar
16.Kwon, K.C., Choi, S., Hong, K., Andoshe, D.M., Suh, J.M., Kim, C., Choi, K.S., Oh, J.H., Kim, S.Y., and Jang, H.W.: Tungsten disulfide thin film/p-type Si heterojunction photocathode for efficient photochemical hydrogen production. MRS Commun. 7, 272 (2017).Google Scholar
17.Lewis, N.S. and Nocera, D.G.: Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 103, 15729 (2006).Google Scholar
18.Kanan, M.W. and Nocera, D.G.: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072 (2008).Google Scholar
19.Henderson, M.A.: A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66, 185 (2011).Google Scholar
20.Tong, H., Ouyang, S., Bi, Y., Umezawa, N., Oshikiri, M., and Ye, J.H.: Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24, 229 (2012).Google Scholar
21.Zhou, H., Qu, Y., Zeid, T., and Duan, X.: Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ. Sci. 5, 6732 (2012).Google Scholar
22.Ma, Y., Wang, X., Jia, Y., Chen, X., Han, H., and Li, C.: Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987 (2014).Google Scholar
23.Park, Y., McDonald, K.J., and Choi, K.-S.: Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42, 2321 (2013).Google Scholar
24.Zou, Z., Ye, J., Sayama, K., and Arakawa, H.: Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625 (2001).Google Scholar
25.Xie, B., Zhang, H., Cai, P., Qiu, R., and Xiong, Y.: Simultaneous photocatalytic reduction of Cr(VI) and oxidation of phenol over monoclinic BiVO4 under visible light irradiation. Chemosphere 63, 956 (2006).Google Scholar
26.Prévot, M.S. and Sivula, K.: Photoelectrochemical tandem cells for solar water splitting. J. Phys. Chem. C 117, 17879 (2013).Google Scholar
27.Bornoz, P., Abdi, F.F., Tilley, S.D., Dam, B., Van De Krol, R., Graetzel, M., and Sivula, K.: A bismuth vanadate-cuprous oxide tandem cell for overall solar water splitting. J. Phys. Chem. C 118, 16959 (2014).Google Scholar
28.Abdi, F.F., Han, L., Smets, A.H.M., Zeman, M., Dam, B., and van de Krol, R.: Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013).Google Scholar
29.Zhao, Z., Li, Z., and Zou, Z.: Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. Phys. Chem. Chem. Phys. 13, 4746 (2011).Google Scholar
30.Walsh, A., Yan, Y., Huda, M.N., Al-Jassim, M.M., and Wei, S.-H.H.: Band edge electronic structure of BiVO4: elucidating the role of the Bi s and V d Orbitals. Chem. Mater. 21, 547 (2009).Google Scholar
31.Zhong, D.K., Choi, S., and Gamelin, D.R.: Near-complete suppression of surface recombination in solar photoelectrolysis by “co-Pi” catalyst-modified W:BiVO4. J. Am. Chem. Soc. 133, 18370 (2011).Google Scholar
32.Abdi, F.F. and van de Krol, R.: Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes. J. Phys. Chem. C 116, 9398 (2012).Google Scholar
33.Berglund, S.P., Rettie, A.J.E., Hoang, S., and Mullins, C.B.: Incorporation of Mo and W into nanostructured BiVO4 films for efficient photoelectrochemical water oxidation. Phys. Chem. Chem. Phys. 14, 7065 (2012).Google Scholar
34.Su, J., Guo, L., Bao, N., and Grimes, C.A.: Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11, 1928 (2011).Google Scholar
35.Kamat, P.V.: Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111, 2834 (2007).Google Scholar
36.Chen, D. and Ye, J.: SrSnO3 nanostructures: synthesis, characterization, and photocatalytic properties. Chem. Mater. 19, 4585 (2007).Google Scholar
37.Zeng, H., Cai, W., Li, Y., Hu, J., and Liu, P.: Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media. J. Phys. Chem. B 109, 18260 (2005).Google Scholar
38.Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem. Rev. 107, 2891 (2007).Google Scholar
39.Berglund, S.P., Flaherty, D.W., Hahn, N.T., Bard, A.J., and Mullins, C.B.: Photoelectrochemical oxidation of water using nanostructured BiVO4 films. J. Phys. Chem. C 115, 3794 (2011).Google Scholar
40.Choi, K.S.: Shape effect and shape control of polycrystalline semiconductor electrodes for use in photoelectrochemical cells. J. Phys. Chem. Lett. 1, 2244 (2010).Google Scholar
41.Chen, Y.S., Manser, J.S., and Kamat, P.V.: All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production. J. Am. Chem. Soc. 137, 974 (2015).Google Scholar
42.Seabold, J.A. and Choi, K.S.: Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 134, 2186 (2012).Google Scholar
43.Xiao, S., Chen, H., Yang, Z., Long, X., Wang, Z., Zhu, Z., Qu, Y., and Yang, S.: Origin of the different photoelectrochemical performance of mesoporous BiVO4 photoanodes between the BiVO4 and the FTO side illumination. J. Phys. Chem. C 119, 23350 (2015).Google Scholar
44.Alarcón-Lladó, E., Chen, L., Hettick, M., Mashouf, N., Lin, Y., Javey, A., and Ager, J.W.: BiVO4 thin film photoanodes grown by chemical vapor deposition. Phys. Chem. Chem. Phys. 16, 1651 (2014).Google Scholar
45.Stoughton, S., Showak, M., Mao, Q., Koirala, P., Hillsberry, D.A., Sallis, S., Kourkoutis, L.F., Nguyen, K., Piper, L.F.J., Tenne, D.A., Podraza, N.J., Muller, D.A., Adamo, C., and Schlom, D.G.: Adsorption-controlled growth of BiVO4 by molecular-beam epitaxy. APL Mater. 1, 42112 (2013).Google Scholar
46.Rettie, A.J.E., Mozaffari, S., McDaniel, M.D., Pearson, K.N., Ekerdt, J.G., Markert, J.T., and Mullins, C.B.: Pulsed laser deposition of epitaxial and polycrystalline bismuth vanadate thin films. J. Phys. Chem. C 118, 26543 (2014).Google Scholar
47.Van, C.N., Chang, W.S., Chen, J.W., Tsai, K.A., Tzeng, W.Y., Lin, Y.C., Kuo, H.H., Liu, H.J., Der Chang, K., Chou, W.C., Wu, C.L., Chen, Y.C., Luo, C.W., Hsu, Y.J., and Chu, Y.H.: Heteroepitaxial approach to explore charge dynamics across Au/BiVO4 interface for photoactivity enhancement. Nano Energy 15, 625 (2015).Google Scholar
48.Jeong, S.Y., Choi, K.S., Shin, H.M., Kim, T.L., Song, J., Yoon, S., Jang, H.W., Yoon, M.H., Jeon, C., Lee, J., and Lee, S.: Enhanced photocatalytic performance depending on morphology of bismuth vanadate thin film synthesized by pulsed laser deposition. ACS Appl. Mater. Interfaces 9, 505 (2017).Google Scholar
49.Ashfold, M.N.R., Claeyssens, F., Fuge, G.M., and Henley, S.J.: Pulsed laser ablation and deposition of thin films. Chem. Soc. Rev. 33, 23 (2004).Google Scholar
50.Kim, T.W. and Choi, K.-S.: Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990 (2014).Google Scholar
51.Rettie, A.J.E., Lee, H.C., Marshall, L.G., Lin, J.F., Capan, C., Lindemuth, J., McCloy, J.S., Zhou, J., Bard, A.J., and Mullins, C.B.: Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: intrinsic behavior of a complex metal oxide. J. Am. Chem. Soc. 135, 11389 (2013).Google Scholar
52.Kang, B.K., Han, G.S., Baek, J.H., Lee, D.G., Song, Y.H., Bin Kwon, S., Cho, I.S., Jung, H.S., and Yoon, D.H.: Nanodome structured BiVO4/GaOxN1−x photoanode for solar water oxidation. Adv. Mater. Interfaces 4, 1700323 (2017).Google Scholar
53.Iqbal, N., Khan, I., Yamani, Z.H., and Qurashi, A.: Sonochemical assisted solvothermal synthesis of gallium oxynitride nanosheets and their solar-driven photoelectrochemical water-splitting applications. Sci. Rep. 6, 1 (2016).Google Scholar
54.Xi, L., Tran, P.D., Chiam, S.Y., Bassi, P.S., Mak, W.F., Mulmudi, H.K., Batabyal, S.K., Barber, J., Loo, J.S.C., and Wong, L.H.: Co3O4-decorated hematite nanorods as an effective photoanode for solar water oxidation. J. Phys. Chem. C 116, 13884 (2012).Google Scholar
55.Morris Hotsenpiller, P.A., Bolt, J.D., Farneth, W.E., Lowekamp, J.B., and Rohrer, G.S.: Orientation dependence of photochemical reactions on TiO2 surfaces. J. Phys. Chem. B 102, 3216 (1998).Google Scholar
56.Hugenschmidt, M.B., Gamble, L., and Campbell, C.T.: The interaction of H2O with a TiO2(110) surface. Surf. Sci. 302, 329 (1994).Google Scholar
57.Yang, H.G., Sun, C.H., Qiao, S.Z., Zou, J., Liu, G., Smith, S.C., Cheng, H.M., and Lu, G.Q.: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638 (2008).Google Scholar
58.Liu, G., Sun, C., Yang, H.G., Smith, S.C., Wang, L., Lu, G.Q., and Cheng, H.-M.: Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chem. Commun. 46, 755 (2010).Google Scholar
59.Zhou, M., Zhang, S., Sun, Y., Wu, C., Wang, M., and Xie, Y.: C-oriented and {010} facets exposed BiVO4 nanowall films: template-free fabrication and their enhanced photoelectrochemical properties. Chem. Asian J. 5, 2515 (2010).Google Scholar
60.Wang, D., Jiang, H., Zong, X., Xu, Q., Ma, Y., Li, G., and Li, C.: Crystal facet dependence of water oxidation on BiVO4 sheets under visible light irradiation. Chem. Eur. J. 17, 1275 (2011).Google Scholar
61.Han, H.S., Shin, S., Kim, D.H., Park, I.J., Kim, J.S., Huang, P.-S., Lee, J.-K., Cho, I.S., and Zheng, X.: Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control. Energy Environ. Sci. 11, 1299 (2018).Google Scholar
62.Dotan, H., Sivula, K., Grätzel, M., Rothschild, A., and Warren, S.C.: Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 4, 958 (2011).Google Scholar
63.Chen, Z., Jaramillo, T.F., Deutsch, T.G., Kleiman-Shwarsctein, A., Forman, A.J., Gaillard, N., Garland, R., Takanabe, K., Heske, C., Sunkara, M., McFarland, E.W., Domen, K., Milled, E.L., and Dinh, H.N.: Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3 (2010).Google Scholar
64.Kim, C.W., Son, Y.S., Kang, M.J., Kim, D.Y., and Kang, Y.S.: (040)-Crystal facet engineering of BiVO4 plate photoanodes for solar fuel production. Adv. Energy Mater. 6, 1501754 (2016).Google Scholar
65.Chen, Z., Dinh, H.N., and Miller, E.: Photoelectrochemical Water Splitting. in Chim. Int. J. Chem. (Springer New York, New York, NY, 2013), p. 73.Google Scholar
66.Rao, P.M., Cai, L., Liu, C., Cho, I.S., Lee, C.H., Weisse, J.M., Yang, P., and Zheng, X.: Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett. 14, 1099 (2014).Google Scholar
67.Li, X., Yu, J., Low, J., Fang, Y., Xiao, J., and Chen, X.: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485 (2015).Google Scholar
68.Zhao, W., Wang, Y., Yang, Y., Tang, J., and Yang, Y.: Carbon spheres supported visible-light-driven CuO-BiVO4 heterojunction: preparation, characterization, and photocatalytic properties. Appl. Catal. B Environ. 115, 90 (2012).Google Scholar
69.Saito, R., Miseki, Y., and Sayama, K.: Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte. Chem. Commun. 48, 3833 (2012).Google Scholar
70.Ju, P., Wang, P., Li, B., Fan, H., Ai, S., Zhang, D., and Wang, Y.: A novel calcined Bi2WO6/BiVO4 heterojunction photocatalyst with highly enhanced photocatalytic activity. Chem. Eng. J. 236, 430 (2014).Google Scholar
71.Hong, S.J., Lee, S., Jang, J.S., and Lee, J.S.: Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci. 4, 1781 (2011).Google Scholar
72.Lee, M.G., Kim, D.H., Sohn, W., Moon, C.W., Park, H., Lee, S., and Jang, H.W.: Conformally coated BiVO4 nanodots on porosity-controlled WO3 nanorods as highly efficient type II heterojunction photoanodes for water oxidation. Nano Energy 28, 250 (2016).Google Scholar
73.Resasco, J., Zhang, H., Kornienko, N., Becknell, N., Lee, H., Guo, J., Briseno, A.L., and Yang, P.: TiO2/BiVO4 nanowire heterostructure photoanodes based on type II band alignment. ACS Cent. Sci. 2, 80 (2016).Google Scholar
74.Pihosh, Y., Turkevych, I., Mawatari, K., Asai, T., Hisatomi, T., Uemura, J., Tosa, M., Shimamura, K., Kubota, J., Domen, K., and Kitamori, T.: Nanostructured WO3/BiVO4 photoanodes for efficient photoelectrochemical water splitting. Small 10, 3692 (2014).Google Scholar
75.Chang, X., Wang, T., Zhang, P., Zhang, J., Li, A., and Gong, J.: Enhanced surface reaction kinetics and charge separation of p–n heterojunction Co3O4/BiVO4 photoanodes. J. Am. Chem. Soc. 137, 8356 (2015).Google Scholar
76.Long, M., Cai, W., Cai, J., Zhou, B., Chai, X., and Wu, Y.: Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B 110, 20211 (2006).Google Scholar
77.McAlpin, J.G., Surendranath, Y., Dinca, M., Stich, T. A., Stoian, S. A., Casey, W.H., Nocera, D.G., Britt, R.D., Dincã, M., Stich, T. A., Stoian, S. A., Casey, W.H., Nocera, D.G., and Britt, R.D.: EPR evidence for Co(IV) species produced during water oxidation at neutral pH. J. Am. Chem. Soc. 4, 6882 (2010).Google Scholar
78.Wang, J. and Osterloh, F.E.: Limiting factors for photochemical charge separation in BiVO4/Co3O4, a highly active photocatalyst for water oxidation in sunlight. J. Mater. Chem. A 2, 9405 (2014).Google Scholar
79.Li, J., Cushing, S.K., Zheng, P., Meng, F., Chu, D., and Wu, N.: Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat. Commun. 4, 1 (2013).Google Scholar
80.Lee, M.G., Moon, C.W., Park, H., Sohn, W., Kang, S.B., Lee, S., Choi, K.J., and Jang, H.W.: Dominance of plasmonic resonant energy transfer over direct electron transfer in substantially enhanced water oxidation activity of BiVO4 by shape-controlled au nanoparticles. Small 13, 1701644 (2017).Google Scholar
81.Zhang, L., Herrmann, L.O., and Baumberg, J.J.: Size dependent plasmonic effect on BiVO4 photoanodes for solar water splitting. Sci. Rep. 5, 1 (2015).Google Scholar
82.Linic, S., Christopher, P., and Ingram, D.B.: Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911 (2011).Google Scholar
83.Valenti, M. and Smith, W.A.: Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting. J. Mater. Chem. A Mater. Energy Sustain. 4, 17891 (2016).Google Scholar
84.Abdi, F.F., Dabirian, A., Dam, B., and van de Krol, R.: Plasmonic enhancement of the optical absorption and catalytic efficiency of BiVO4 photoanodes decorated with Ag@SiO2 core–shell nanoparticles. Phys. Chem. Chem. Phys. 16, 15272 (2014).Google Scholar
85.Halas, N.J., Lal, S., Chang, W., Link, S., and Nordlander, P.: Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913 (2011).Google Scholar
86.Chatchai, P., ya Kishioka, S., Murakami, Y., Nosaka, A.Y., and Nosaka, Y.: Enhanced photoelectrocatalytic activity of FTO/WO3/BiVO4 electrode modified with gold nanoparticles for water oxidation under visible light irradiation. Electrochim. Acta 55, 592 (2010).Google Scholar
87.Chen, H.M., Chen, C.K., Chen, C.-J., Cheng, L.-C., Wu, P.C., Cheng, B.H., Ho, Y.Z., Tseng, M.L., Hsu, Y.-Y., Chan, T.-S., Lee, J.-F., Liu, R.-S., and Tsai, D.P.: Plasmon inducing effects for enhanced photoelectrochemical water splitting: x-ray absorption approach to electronic structures. ACS Nano 6, 7362 (2012).Google Scholar
88.Hu, D., Diao, P., Xu, D., and Wu, Q.: Gold/WO3 nanocomposite photoanodes for plasmonic solar water splitting. Nano Res. 9, 1735 (2016).Google Scholar
89.Wang, M., Ye, M., Iocozzia, J., Lin, C., and Lin, Z.: Plasmon-mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites. Adv. Sci. 3, 1600024 (2015).Google Scholar
90.Pu, Y.C., Wang, G., Der Chang, K., Ling, Y., Lin, Y.K., Fitzmorris, B.C., Liu, C.M., Lu, X., Tong, Y., Zhang, J.Z., Hsu, Y.J., and Li, Y.: Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 13, 3817 (2013).Google Scholar
91.Kundu, S.: A new route for the formation of Au nanowires and application of shape-selective Au nanoparticles in SERS studies. J. Mater. Chem. C 1, 831 (2013).Google Scholar
92.Moon, C.W., Lee, S.Y., Sohn, W., Andoshe, D.M., Kim, D.H., Hong, K., and Jang, H.W.: Plasmonic octahedral gold nanoparticles of maximized near electromagnetic fields for enhancing catalytic hole transfer in solar water splitting. Part. Part. Syst. Charact. 34, 1600340 (2017).Google Scholar
93.Liu, Y., Yan, X., Kang, Z., Li, Y., Shen, Y., Sun, Y., Wang, L., and Zhang, Y.: Synergistic effect of surface plasmonic particles and surface passivation layer on ZnO nanorods array for improved photoelectrochemical water splitting. Sci. Rep. 6, 1 (2016).Google Scholar
94.Jeong, S.Y., Shin, H.-M., Jo, Y.-R., Kim, Y.J., Kim, S., Lee, W.-J., Lee, G.J., Song, J., Moon, B.J., Seo, S., An, H., Lee, S.H., Song, Y.M., Kim, B.-J., Yoon, M.-H., and Lee, S.: Plasmonic silver nanoparticle-impregnated nanocomposite BiVO4 photoanode for plasmon-enhanced photocatalytic water splitting. J. Phys. Chem. C 122, 7088 (2018).Google Scholar
95.Li, J., Zhou, J., Hao, H., and Li, W.: Controlled synthesis of Fe2O3 modified Ag-(010)BiVO4 heterostructures with enhanced photoelectrochemical activity toward the dye degradation. Appl. Surf. Sci. 399, 1 (2017).Google Scholar
96.Huang, C.K., Wu, T., Huang, C.W., Lai, C.Y., Wu, M.Y., and Lin, Y.W.: Enhanced photocatalytic performance of BiVO4 in aqueous AgNO3 solution under visible light irradiation. Appl. Surf. Sci. 399, 10 (2017).Google Scholar
97.Zhong, D.K., Cornuz, M., Sivula, K., Grätzel, M., and Gamelin, D.R.: Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ. Sci. 4, 1759 (2011).Google Scholar
98.Seabold, J.A. and Choi, K.S.: Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem. Mater. 23, 1105 (2011).Google Scholar
99.Fang, L., Nan, F., Yang, Y., and Cao, D.: Enhanced photoelectrochemical and photocatalytic activity in visible-light-driven Ag/BiVO4 inverse opals. Appl. Phys. Lett. 108, 93902 (2016).Google Scholar
100.Thimsen, E., Le Formal, F., Grätzel, M., and Warren, S.C.: Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. Nano Lett. 11, 35 (2011).Google Scholar
101.Thomann, I., Pinaud, B.A., Chen, Z., Clemens, B.M., Jaramillo, T.F., and Brongersma, M.L.: Plasmon enhanced solar-to-fuel energy conversion. Nano Lett. 11, 3440 (2011).Google Scholar
102.McDonald, K.J. and Choi, K.-S.: A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ. Sci. 5, 8553 (2012).Google Scholar
103.Zhong, D.K., Sun, J., Inumaru, H., and Gamelin, D.R.: Solar water oxidation by composite catalyst/r-Fe2O3 photoanodes. J. Am. Chem. Soc. 131, 6086 (2009).Google Scholar
104.Zhong, D.K. and Gamelin, D.R.: Photoelectrochemical water oxidation by cobalt catalyst (“Co-Pi”)r-Fe2O3 composite photoanodes oxygen evolution and resolution of a kinetic bottleneck.pdf. J. Am. Chem. Soc. 132, 4202 (2010).Google Scholar
105.Steinmiller, E.M.P. and Choi, K.-S.: Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. Proc. Natl. Acad. Sci. USA 106, 20633 (2009).Google Scholar
106.Pijpers, J.J.H., Winkler, M.T., Surendranath, Y., Buonassisi, T., and Nocera, D.G.: Supporting information light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen evolving catalyst. Proc. Natl. Acad. Sci. USA 108, 10056 (2011).Google Scholar
107.Young, E.R., Costi, R., Paydavosi, S., Nocera, D.G., and Bulović, V.: Photo-assisted water oxidation with cobalt-based catalyst formed from thin-film cobalt metal on silicon photoanodes. Energy Environ. Sci. 4, 2058 (2011).Google Scholar
108.Luo, W., Yang, Z., Li, Z., Zhang, J., Liu, J., Zhao, Z., Wang, Z., Yan, S., Yu, T., and Zou, Z.: Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ. Sci. 4, 4046 (2011).Google Scholar
109.Jeon, T.H., Choi, W., and Park, H.: Cobalt–phosphate complexes catalyze the photoelectrochemical water oxidation of BiVO4 electrodes. Phys. Chem. Chem. Phys. 13, 21392 (2011).Google Scholar
110.Sanchez, C., Sieber, K.D., and Somorjai, G.A.: The photoelectrochemistry of niobium doped α-Fe2O3. J. Electroanal. Chem. 252, 269 (1988).Google Scholar
111.Le Formal, F., Tétreault, N., Cornuz, M., Moehl, T., Grätzel, M., and Sivula, K.: Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2, 737 (2011).Google Scholar
112.Zhong, M., Hisatomi, T., Kuang, Y., Zhao, J., Liu, M., Iwase, A., Jia, Q., Nishiyama, H., Minegishi, T., Nakabayashi, M., Shibata, N., Niishiro, R., Katayama, C., Shibano, H., Katayama, M., Kudo, A., Yamada, T., and Domen, K.: Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J. Am. Chem. Soc. 137, 5053 (2015).Google Scholar
113.Xie, J., Guo, C., Yang, P., Wang, X., Liu, D., and Li, C.M.: Bi-functional ferroelectric BiFeO3 passivated BiVO4 photoanode for efficient and stable solar water oxidation. Nano Energy 31, 28 (2017).Google Scholar
114.Gao, F., Chen, X.Y., Yin, K.B., Dong, S., Ren, Z.F., Yuan, F., Yu, T., Zou, Z.G., and Liu, J.-M.: Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv. Mater. 19, 2889 (2007).Google Scholar
115.Zhang, Y., Schultz, A.M., Salvador, P.A., and Rohrer, G.S.: Spatially selective visible light photocatalytic activity of TiO2/BiFeO3 heterostructures. J. Mater. Chem. 21, 4168 (2011).Google Scholar
116.Zhang, W., Yang, M.M., Liang, X., Zheng, H.W., Wang, Y., Gao, W.X., Yuan, G.L., Zhang, W.F., Li, X.G., Luo, H.S., and Zheng, R.K.: Piezostrain-enhanced photovoltaic effects in BiFeO3/La0.7Sr0.3MnO3/PMN-PT heterostructures. Nano Energy 18, 315 (2015).Google Scholar
117.Dong, W., Guo, Y., Guo, B., Li, H., Liu, H., and Joel, T.W.: Enhanced photovoltaic effect in BiVO4 semiconductor by incorporation with an ultrathin BiFeO3 ferroelectric layer. ACS Appl. Mater. Interfaces 5, 6925 (2013).Google Scholar
118.U.S. Department of Energy: DOE Technical Targets for Hydrogen Production from Electrolysis (2015). Available at: https://energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-production-electrolysis (accessed 27 April 2018).Google Scholar
119.Sayama, K. and Miseki, Y.: Research and development of solar hydrogen production—toward the realization of ingenious photocatalysis-electrolysis hybrid system. Synthesiology 7, 81 (2014).Google Scholar
120.Hisatomi, T. and Domen, K.: Introductory lecture: sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis. Faraday Discuss. 198, 11 (2017).Google Scholar
Supplementary material: File

Kim et al. supplementary material 1

Kim et al. supplementary material

Download Kim et al. supplementary material 1(File)
File 3.9 MB