Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T07:26:13.889Z Has data issue: false hasContentIssue false

Bioreplication for optical applications

Published online by Cambridge University Press:  29 April 2018

Raúl J. Martín-Palma*
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
Akhlesh Lakhtakia
Affiliation:
Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
*
Address all correspondence to Raúl J. Martín-Palma at [email protected]
Get access

Abstract

Evolving from the oblique-angle deposition method used industrially for the deposition of thin films, the conformal-evaporated-film-by-rotation (CEFR) technique has been successfully applied to replicate surfaces of biologic origin. The CEFR technique is the first step of the Nano4Bio technique, an industrially scalable bioreplication process, the other three steps being electroforming, plasma ashing, and either stamping or casting. These techniques have found optical applications in diverse fields, including forensic science, pest control, and light sources.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bar-Cohen, Y. (ed.): Biomimetics: Biologically Inspired Technologies (CRC Press, Boca Raton, FL, USA, 2006).Google Scholar
2.Swiegers, G.F. (ed.): Bioinspiration and Biomimicry in Chemistry: Reverse-Engineering Nature (Wiley, Hoboken, NJ, USA, 2012).Google Scholar
3.Lakhtakia, A. and Martín-Palma, R.J. (eds.): Engineered Biomimicry (Elsevier, Waltham, MA, USA, 2013).Google Scholar
4.Martín-Palma, R.J. and Lakhtakia, A.: Progress on bioinspired, biomimetic, and bioreplication routes to harvest solar energy. Appl. Phys. Rev. 4, 021103 (2017).Google Scholar
5.Vepa, R.: Biomimetic Robotics: Mechanism and Control (Cambridge University Press, New York, NY, USA, 2009).Google Scholar
6.Gomez, J.C. and Garcia, E.: Morphing unmanned aerial vehicles. Smart Mater. Struct. 20, 103001 (2001).Google Scholar
7.Marras, S. and Porfiri, M.: Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion. J. R. Soc. Interface 9, 1856 (2012).Google Scholar
8.Amador, G.J. and Hu, D.L.: Cleanliness is next to godliness: mechanisms for staying clean. J. Exp. Biol. 218, 3164 (2015).Google Scholar
9.Zobl, S., Salvenmoser, W., Schwerte, T., Gebeshuber, I.C., and Schreiner, M.: Morpho peleides butterfly wing imprints as structural colour stamp. Bioinspir. Biomim. 11, 016006 (2016).Google Scholar
10.Domel, A.G., Saadat, M., Weaver, J.C., Haj-Hariri, H., Bertold, K., and Lauder, G.V.: Shark skin-inspired designs that improve aerodynamic performance. J. R. Soc. Interface 15, 20170828 (2018).Google Scholar
11.Huang, J., Wang, X., and Wang, Z.L.: Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Lett. 6, 2325 (2006).Google Scholar
12.Hodgkinson, I.J. and Wu, Q.-h.: Birefringent thin films and polarizing elements (World Scientific, Singapore, 1997).Google Scholar
13.Baumeister, P.W.: Optical Coating Technology (SPIE Press, Bellingham, WA, USA, 2004).Google Scholar
14.Lakhtakia, A. and Messier, R.: Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, WA, USA, 2005).Google Scholar
15.Pulsifer, D.P., Lakhtakia, A., Martín-Palma, R.J., and Pantano, C.G.: Mass fabrication technique for polymeric replicas of arrays of insect corneas. Bioinspir. Biomim. 5, 036001 (2010).Google Scholar
16.Pulsifer, D.P., Lakhtakia, A., Narkhede, M.S., Domingue, M.J., Post, B.G., Kumar, J., Martín-Palma, R.J., and Baker, T.C.: Fabrication of polymeric visual decoys for the male emerald ash borer (Agrilus planipennis). J. Bionic Eng. 10, 129 (2013).Google Scholar
17.Lakhtakia, A., Shaler, R.C., Martín-Palma, R.J., Motyka, M.A., and Pulsifer, D.P.: Solid-state acquisition of fingermark topology using dense columnar thin films. J. Forensic Sci. 56, 612 (2011).CrossRefGoogle ScholarPubMed
18.Shaler, R.C., Lakhtakia, A., Rogers, J.W., Pulsifer, D.P., and Martín-Palma, R.J.: Columnar-thin-film acquisition of fingerprint topology. J. Nanophotonics 5, 051509 (2011).Google Scholar
19.Muhlberger, S.A., Pulsifer, D.P., Lakhtakia, A., Martín-Palma, R.J., and Shaler, R.C.: Optimized development of sebaceous fingermarks on nonporous substrates with conformal columnar thin films. J. Forensic Sci. 59, 94 (2013).Google Scholar
20.Abeywickrema, U., Banerjee, P., Kota, A., Swiontek, S.E., and Lakhtakia, A.: High-resolution topograms of fingerprints using multiwavelength digital holography. Opt. Eng. 56, 034117 (2017).Google Scholar
21.Mattox, D.M.: The Foundations of Vacuum Coating Technology (William Andrew Publishing, Norwich, NY, USA, 2003).Google Scholar
22.Khawaji, I.H., Chindam, C., Awadelkarim, O.O., and Lakhtakia, A.: Dielectric properties of and charge transport in columnar microfibrous thin films of parylene C. IEEE Trans. Electron Devices 64, 3360 (2017).Google Scholar
23.Khawaji, I.H., Chindam, C., Awadelkarim, O.O., and Lakhtakia, A.: Selectablity of mechanical and dielectric properties of parylene-C columnar microfibrous thin films by varying deposition angle. Flex. Printed Electron. 2, 045012 (2017).Google Scholar
24.Chindam, C., Lakhtakia, A., and Awadelkarim, O.O.: Parylene-C microfibrous thin films as phononic crystals. J. Micromech. Microeng. 27, 075012 (2017).Google Scholar
25.Wei, L., Lakhtakia, A., Roopnariane, A.P., and Ritty, T.M.: Human fibroblast attachment on fibrous parylene-C thin-film substrates. Mater. Sci. Eng. C 30, 1252 (2010).Google Scholar
26.Wei, L., Vogler, E.A., Ritty, T.M., and Lakhtakia, A.: A 2D surface morphology-composition gradient panel for protein-binding assays. Mater. Sci. Eng. C 31, 1861 (2011).Google Scholar
27.Martín-Palma, R.J. and Lakhtakia, A.: Nanotechnology: A Crash Course (SPIE Press, Bellingham, WA, USA, 2010).Google Scholar
28.Messier, R., Venugopal, V.C., and Sunal, P.D.: Origin and evolution of sculptured thin films. J. Vac. Sci. Technol. A 18, 1538 (2000).Google Scholar
29.Gribble, C.D. and Hall, A.J.: Optical Mineralogy: Principles and Practice (University College London Press, London, UK, 1993).Google Scholar
30.Wei, L. and Lakhtakia, A.: Fabrication of free standing, three-dimensional, fibrous, thin film substrates of parylene C. Mater. Res. Innov. 17, 129 (2013).Google Scholar
31.Pulsifer, D.P., Martín-Palma, R.J., Swiontek, S.E., Pantano, C.G., and Lakhtakia, A.: Wideband-rejection filters and reflection-hole filters of chalcogenide glass for circularly polarized IR-A and IR-B radiation. Opt. Mater. Express 1, 1332 (2011).Google Scholar
32.Martín-Palma, R.J., Pantano, C.G., and Lakhtakia, A.: Replication of fly eyes by the conformal-evaporated-film-by-rotation technique. Nanotechnology 19, 355704 (2008).Google Scholar
33.Martín-Palma, R.J., Pantano, C.G., and Lakhtakia, A.: Biomimetization of butterfly wings by the conformal-evaporated-film-by-rotation technique for photonics. Appl. Phys. Lett. 93, 083901 (2008).CrossRefGoogle Scholar
34.Lakhtakia, A., Martín-Palma, R.J., Motyka, M.A., and Pantano, C.G.: Fabrication of free-standing replicas of fragile, laminar, chitinous biotemplates. Bioinspir. Biomim. 4, 034001 (2009).Google Scholar
35.Gupta, T., Swiontek, S.E., and Lakhtakia, A.: Simpler mass production of polymeric visual decoys for the male emerald ash borer (Agrilus planipennis). J. Bionic Eng. 12, 263 (2015).Google Scholar
36.Martín-Palma, R.J., Pantano, C.G., and Lakhtakia, A.: Towards the use of the conformal-evaporated-film-by-rotation technique in fabricating microelectronic circuits and microsystems. Microelectron. Reliab. 49, 460 (2009).Google Scholar
37.Parker, A.R. and Townley, H.E.: Biomimetics of photonic nanostructures. Nat. Nanotechnol. 2, 347 (2007).Google Scholar
38.Ghiradella, H.: Insect cuticular surface modifications: scales and other structural formations. Adv. Insect Physiol. 38, 135 (2010).Google Scholar
39.Dushkina, N. and Lakhtakia, A.: Structural colors. In Engineered Biomimicry, edited by Lakhtakia, A. and Martín-Palma, R.J. (Elsevier, Waltham, MA, USA, 2013), pp. 267303.Google Scholar
40.Pulsifer, D.P., Lakhtakia, A., and Martín-Palma, R.J.: Improved conformal coatings by oblique-angle deposition for bioreplication. Appl. Phys. Lett. 95, 193701 (2009).Google Scholar
41.Tolenis, T., Swiontek, S.E., and Lakhtakia, A.: Structural colours of nickel bioreplicas of butterfly wings. J. Mod. Opt. 64, 781 (2017).Google Scholar
42.Robinson, S. and Robinson, A.H.: Chemical composition of sweat. Physiol. Rev. 34, 202 (1954).Google Scholar
43.Cole, S.A.: Suspect Identities: A History of Fingerprinting and Criminal Identification (Harvard University Press, Cambridge, MA, 2001).CrossRefGoogle Scholar
44.Swiontek, S.E., Pulsifer, D.P., and Lakhtakia, A.: Quality of development of latent sebaceous fingerprints coated with thin films of different morphologies. J. Vac. Sci. Technol. A 32, 020605 (2014).Google Scholar
45.Williams, S.F., Pulsifer, D.P., Lakhtakia, A., and Shaler, R.C.: Visualization of partial bloody fingerprints on nonporous substrates using columnar thin films. Can. Soc. Forensic Sci. J. 48, 20 (2015).Google Scholar
46.Balogh, M.K., Burger, J., Bender, K., Schneider, P.M., and Alt, K.W.: STR genotyping and mtDNA sequencing of latent fingerprint on paper. Forensic Sci. Int. 137, 188 (2003).Google Scholar
47.Plazibat, S.L., Roy, R., Swiontek, S.E., and Lakhtakia, A.: Generation of DNA profiles from fingerprints developed with columnar thin film technique. Forensic Sci. Int. 257, 453 (2015).Google Scholar
48.Domingue, M.J., Lakhtakia, A., Pulsifer, D.P., Hall, L.P., Badding, J.V., Bischof, J.L., Martín-Palma, R.J., Imrei, Z., Janik, G., Mastro, V.C., Hazen, M., and Baker, T.C.: Bioreplicated visual features of nanofabricated buprestid beetle decoys evoke stereotypical male mating flights. Proc. Natl. Acad. Sci. USA 111, 14106 (2014).Google Scholar
49.Domingue, M.J., Pulsifer, D.P., Lakhtakia, A., Berkebile, J., Steiner, K.C., Lelito, J.P., Hall, L.P., and Baker, T.C.: Detecting emerald ash borers (Agrilus planipennis) using branch traps baited with 3D-printed beetle decoys. J. Pest Sci. 88, 267 (2015).Google Scholar
50.Horridge, G.A.: Apposition eyes of large diurnal insects as organs adapted to seeing. Philos. Trans. R. Soc. Lond. B 207, 287 (1980).Google Scholar
51.Martín-Palma, R.J., Miller, A.E., Pulsifer, D.P., and Lakhtakia, A.: Angular distribution of light emission from compound-eye cornea with conformal fluorescent coating. Appl. Phys. Lett. 105, 103703 (2014).Google Scholar