Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T05:27:29.953Z Has data issue: false hasContentIssue false

Biofunctionalized nanodot zirconia-based efficient biosensing platform for noninvasive oral cancer detection

Published online by Cambridge University Press:  30 September 2020

Suveen Kumar
Affiliation:
Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi110042, India Department of Chemistry, University of Delhi, Delhi110007, India
Dipti Chauhan
Affiliation:
Department of Chemistry, University of Delhi, Delhi110007, India
Venkatesan Renugopalakrishnan
Affiliation:
Boston Children's Hospital, Harvard Medical School, Boston, MA02115, USA Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA02115, USA
Bansi D. Malhotra*
Affiliation:
Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi110042, India
*
Address all correspondence to Bansi D. Malhotra at [email protected]
Get access

Abstract

The authors report results of the studies relating to the synthesis of nanodot zirconia that has been utilized for the fabrication of electrochemical biosensing platform for the detection of CYFRA-21-1 biomarker, secreted in saliva samples of oral cancer patients. For the synthesis of nanodot zirconia (ndZrO2), the hydrothermal process was used and further functionalized with 3-aminopropyl triethoxysilane (APTES). Electrophoretic deposition technique was employed for its deposition onto the ITO electrode. The EDC-NHS reaction was used for anti-CYFRA-21-1 immobilization and bovine serum albumin (BSA) was used for blocking of the nonspecific binding sites. The fabricated biosensing platform (BSA/anti-CYFRA-21-1/APTES/ndZrO2/ITO) exhibited a wide linear detection range (0.5–50 ng/mL) with excellent sensitivity (0.53 μA mL/ng cm2).

Type
Research Letters
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hussein, A.A., Helder, M.N., de Visscher, J.G., Leemans, C.R., Braakhuis, B.J., de Vet, H.C., and Forouzanfar, T.: Global incidence of oral and oropharynx cancer in patients younger than 45 years versus older patients: a systematic review. Eur. J. Cancer 82, 115 (2017).CrossRefGoogle ScholarPubMed
Kumar, S., Kumar, S., Tiwari, S., Srivastava, S., Srivastava, M., Yadav, B.K., Kumar, S., Tran, T.T., Dewan, A.K., and Mulchandani, A.: Biofunctionalized nanostructured zirconia for biomedical application: a smart approach for oral cancer detection. Adv. Sci. 2, 1500048 (2015).CrossRefGoogle Scholar
Katakura, A., Kamiyama, I., Takano, N., Shibahara, T., Muramatsu, T., Ishihara, K., Takagi, R., and Shouno, T.: Comparison of salivary cytokine levels in oral cancer patients and healthy subjects. Bull. Tokyo Dent. Coll. 48, 199 (2007).CrossRefGoogle ScholarPubMed
Rajkumar, K., Ramya, R., Nandhini, G., Rajashree, P., Ramesh Kumar, A., and Nirmala Anandan, S.: Salivary and serum level of CYFRA 21-1 in oral precancer and oral squamous cell carcinoma. Oral Dis. 21, 90 (2015).CrossRefGoogle ScholarPubMed
Torrente-Rodríguez, R., Campuzano, S., Montiel, V.R.-V., Gamella, M., and Pingarrón, J.: Electrochemical bioplatforms for the simultaneous determination of interleukin (IL)-8 mRNA and IL-8 protein oral cancer biomarkers in raw saliva. Biosens. Bioelectron. 77, 543 (2016).CrossRefGoogle ScholarPubMed
Choudhary, M., Yadav, P., Singh, A., Kaur, S., Ramirez-Vick, J., Chandra, P., Arora, K., and Singh, S.P.: CD 59 targeted ultrasensitive electrochemical immunosensor for fast and noninvasive diagnosis of oral cancer. Electroanalysis 28, 2565 (2016).CrossRefGoogle Scholar
Kumar, S., Kumar, S., Augustine, S., Yadav, S., Yadav, B.K., Chauhan, R.P., Dewan, A.K., and Malhotra, B.D.: Effect of Brownian motion on reduced agglomeration of nanostructured metal oxide towards development of efficient cancer biosensor. Biosens. Bioelectron. 102, 247 (2018).CrossRefGoogle ScholarPubMed
Pachauri, N., Lakshmi, G., Sri, S., Gupta, P.K., and Solanki, P.R.: Silver molybdate nanoparticles based immunosensor for the non-invasive detection of interleukin-8 biomarker. Mater. Sci. Eng. C 113, 110911 (2020).CrossRefGoogle ScholarPubMed
Wang, Q., Gao, P., Cheng, F., Wang, X., and Duan, Y.: Measurement of salivary metabolite biomarkers for early monitoring of oral cancer with ultraperformance liquid chromatography–mass spectrometry. Talanta 119, 299 (2014).CrossRefGoogle Scholar
Cheng, Y.-S.L., Rees, T., and Wright, J.: A review of research on salivary biomarkers for oral cancer detection. Clin. Transl. Med. 3, 3 (2014).CrossRefGoogle ScholarPubMed
Cooper, J. and Cass, T.: Biosensors (Oxford University Press, New York, 2004).Google Scholar
Malhotra, B.D. and Ali, M.A.: Chapter 1: Nanomaterials in biosensors: fundamentals and applications. In Nanomaterials for Biosensors, Micro and Nano Technologies, edited by Malhotra, B.D. and Ali, A. (William Andrew Publishing, Netherlands, 2018), pp. 1332.Google Scholar
Malhotra, B.D. and Turner, A.: Advances in Biosensors: Perspectives in Biosensors (Elsevier, Netherland, 2003).Google Scholar
Augustine, S., Kumar, P., and Malhotra, B.D.: Amine-functionalized MoO3@ RGO nanohybrid-based biosensor for breast cancer detection. ACS Appl. Bio Mater. 2, 5366 (2019).CrossRefGoogle Scholar
Thapa, B., Diaz-Diestra, D., Santiago-Medina, C., Kumar, N., Tu, K., Beltran-Huarac, J., Jadwisienczak, W.M., Weiner, B.R., and Morell, G.: T1- and T2-weighted magnetic resonance dual contrast by single core truncated cubic iron oxide nanoparticles with abrupt cellular internalization and immune evasion. ACS Appl. Bio Mater. 1, 79 (2018).CrossRefGoogle ScholarPubMed
Diaz-Diestra, D., Thapa, B., Beltran-Huarac, J., Weiner, B., and Morell, G.: L-cysteine capped ZnS: Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity. Biosens. Bioelectron. 87, 693 (2017).CrossRefGoogle ScholarPubMed
Kumar, S., Kumar, S., Tiwari, S., Augustine, S., Srivastava, S., Yadav, B.K., and Malhotra, B.D.: Highly sensitive protein functionalized nanostructured hafnium oxide based biosensing platform for non-invasive oral cancer detection. Sens. Actuat. B 235, 1 (2016).CrossRefGoogle Scholar
Kumar, S., Panwar, S., Kumar, S., Augustine, S., and Malhotra, B.D.: Biofunctionalized nanostructured yttria modified non-invasive impedometric biosensor for efficient detection of oral cancer. Nanomaterials 9, 1190 (2019).CrossRefGoogle ScholarPubMed
Kumar, S., Sharma, J.G., Maji, S., and Malhotra, B.D.: Nanostructured zirconia decorated reduced graphene oxide based efficient biosensing platform for non-invasive oral cancer detection. Biosens. Bioelectron. 78, 497 (2016).CrossRefGoogle ScholarPubMed
Kumar, S., Sharma, J.G., Maji, S., and Malhotra, B.D.: A biocompatible serine functionalized nanostructured zirconia based biosensing platform for non-invasive oral cancer detection. RSC Adv. 6, 77037 (2016).CrossRefGoogle Scholar
Tiwari, S., Gupta, P.K., Bagbi, Y., Sarkar, T., and Solanki, P.R.: L-cysteine capped lanthanum hydroxide nanostructures for non-invasive detection of oral cancer biomarker. Biosens. Bioelectron. 89, 1042 (2017).CrossRefGoogle ScholarPubMed
Pachauri, N., Dave, K., Dinda, A., and Solanki, P.R.: Cubic CeO2 implanted reduced graphene oxide-based highly sensitive biosensor for non-invasive oral cancer biomarker detection. J. Mater. Chem. B 6, 3000 (2018).CrossRefGoogle ScholarPubMed
Gautam, C., Joyner, J., Gautam, A., Rao, J., and Vajtai, R.: Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton Trans. 45, 19194 (2016).CrossRefGoogle ScholarPubMed
Manicone, P.F., Iommetti, P.R., and Raffaelli, L.: An overview of zirconia ceramics: basic properties and clinical applications. J. Dent. 35, 819 (2007).CrossRefGoogle ScholarPubMed
Fengqiu, T., Xiaoxian, H., Yufeng, Z., and Jingkun, G.: Effect of dispersants on surface chemical properties of nano-zirconia suspensions. Ceram. Int. 26, 93 (2000).CrossRefGoogle Scholar
Kim, H.: Nano-Scale Zirconia and Hafnia Dielectrics Grown by Atomic Layer Deposition: Crystallinity, Interface Structures and Electrical Properties (Stanford University, USA, 2004).Google Scholar
Weber, J., Jeedigunta, S., and Kumar, A.: Fabrication and characterization of ZnO nanowire arrays with an investigation into electrochemical sensing capabilities. J. Nanomater. 2008, 15 (2008).CrossRefGoogle Scholar
Sun, X., Wang, J., and Wei, A.: Zinc oxide nanostructured biosensor for glucose detection. J. Mater. Sci. Technol. 24, 649 (2008).Google Scholar
Hwa, K.-Y. and Subramani, B.: Synthesis of zinc oxide nanoparticles on graphene–carbon nanotube hybrid for glucose biosensor applications. Biosens. Bioelectron. 62, 127 (2014).CrossRefGoogle ScholarPubMed
Tang, S., Zhao, Q., and Tu, Y.: A sensitive electrochemiluminescent cholesterol biosensor based on Au/hollowed-TiO2 nano-composite pre-functionalized electrode. Sens. Actuat. B Chem. 237, 416 (2016).CrossRefGoogle Scholar
Azahar Ali, M., Srivastava, S., Solanki, P.R., Varun Agrawal, V., John, R., and Malhotra, B.D.: Nanostructured anatase-titanium dioxide based platform for application to microfluidics cholesterol biosensor. Appl. Phys. Lett. 101, 084105 (2012).CrossRefGoogle Scholar
Jafarpour, M., Rezapour, E., Ghahramaninezhad, M., and Rezaeifard, A.: A novel protocol for selective synthesis of monoclinic zirconia nanoparticles as a heterogeneous catalyst for condensation of 1,2-diamines with 1,2-dicarbonyl compounds. New J. Chem. 38, 676 (2014).CrossRefGoogle Scholar
Kumar, S., Bhunia, S., and Ojha, A.K.: Effect of calcination temperature on phase transformation, structural and optical properties of sol–gel derived ZrO2 nanostructures. Phys. E Low Dimens. Syst. Nanostruct. 66, 74 (2015).CrossRefGoogle Scholar
Kumar, A., Badoni, R.P., Singhal, S., Agarwal, S., and Tripathi, A.R.: Synthesis and characterization of zirconia-based catalyst for the isomerization of n-hexane. Chem. Eng. Commun. 205, 92 (2018).CrossRefGoogle Scholar
Pavia, D., Lampman, G., Kriz, G., and Vyvyan, J.: Introduction to Spectroscopy, Chap. 2 (Harcourt College, TX, 1996).Google Scholar
Scholl, J.A., Koh, A.L., and Dionne, J.A.: Quantum plasmon resonances of individual metallic nanoparticles. Nature 483, 421 (2012).CrossRefGoogle ScholarPubMed
Supplementary material: File

Kumar et al. supplementary material

Kumar et al. supplementary material

Download Kumar et al. supplementary material(File)
File 928.3 KB