Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T04:05:04.516Z Has data issue: false hasContentIssue false

Assessing failure in epitaxially encapsulated micro-scale sensors using micro and nano x-ray computed tomography

Published online by Cambridge University Press:  12 April 2018

Lizmarie Comenencia Ortiz*
Affiliation:
Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA, 94305, USA
David B. Heinz
Affiliation:
Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA, 94305, USA
Ian B. Flader
Affiliation:
Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA, 94305, USA
Anne L. Alter
Affiliation:
Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA, 94305, USA
Dongsuk D. Shin
Affiliation:
Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA, 94305, USA
Yunhan Chen
Affiliation:
Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA, 94305, USA
Thomas W. Kenny
Affiliation:
Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA, 94305, USA
*
Address all correspondence to Lizmarie Comenencia Ortiz at [email protected]
Get access

Abstract

Millions of micro electro mechanical system sensors are fabricated each year using an ultra-clean process that allows for a vacuum-encapsulated cavity. These devices have a multi-layer structure that contains hidden layers with highly doped silicon, which makes common imaging techniques ineffective. Thus, examining device features post-fabrication, and testing, is a significant challenge. Here, we use a combination of micro- and nano-scale x-ray computed tomography to study device features and assess failure mechanisms in such devices without destroying the ultra-clean cavity. This provides a unique opportunity to examine surfaces and trace failure mechanisms to specific steps in the fabrication process.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Martin, J.: High Volume Manufacturing and Field Stability of MEMS Products: Springer Handbook of Nanotechnology (Springer-Verlag, Berlin, Germany, 2007), pp. 17491776.Google Scholar
2.Perlmutter, M. and Breit, S.: In The future of the MEMS inertial sensor performance, design and manufacturing, DGON Inertial Sensors and Syst., Karlsruhe, 2016; pp. 112.CrossRefGoogle Scholar
3.de Veen, P.J., Bos, C., Hoogstede, D.R., Revenberg, C.Th.A., Liljeholm, J., and Ebefors, T.: High-resolution x-ray computed tomography of through silicon vias for RF MEMS integrated passive device applications. Microelectron. Reliab. 55, 1644 (2015).Google Scholar
4.Manier, C.A., Zoschke, K., Oppermann, H., Ruffieux, D., Dalla Piazza, S., Suni, T., Dekker, J., and Allegato, G.: In Vacuum packaging at wafer level for MEMS using gold-tin metallurgy, European Microelectronics Packaging Conf., Grenoble, 2013; pp. 18.Google Scholar
5.Wang, Y.: High-Resolution 3D Imaging and Material Analysis with Transmission X-Ray Microscopy and Nano-Ct: Characterization of Materials (John Wiley and Sons, Hoboken, 2012), pp. 110.Google Scholar
6.Bajura, M., Boverman, G., Tan, J., Wagenbreth, G., Rogers, C.M., Feser, M., Rudati, J., Tkachuk, A., Aylward, S., and Reynolds, P.: In Imaging Integrated Circuits with x-ray Microscopy, Proc. 36th GOMACTech Conf., Florida, USA, 2011.Google Scholar
7.Zschech, E., Yun, W., and Schneider, G.: High-resolution x-ray imaging-a powerful nondestructive technique for applications in semiconductor industry. Appl. Phys. A 92, 423 (2008).CrossRefGoogle Scholar
8.Wyon, C.: X-ray metrology for advanced microelectronics. Eur. Phys. J. Appl. Phys. 49, 20101 (2010).Google Scholar
9.Deng, J., Hong, Y.P., Chen, S., Nashed, Y.S., Peterka, T., Levi, A.J., Damoulakis, J., Saha, S., Eiles, T., and Jacobsen, C.: Nanoscale x-ray imaging of circuit features without wafer etching. Phys. Rev. B 95, 104111 (2017).Google Scholar
10.Zschech, E. and Diebold, A.: In Metrology and failure analysis for 3D IC integration, AIP Conf. Proc., 2011; pp. 233239.Google Scholar
11.Partridge, A. and Lutz, M.: In Episeal pressure sensor and method for making an episeal pressure sensor. U.S. Patent #6928879 (2005).Google Scholar
12.Candler, R.N., Hopcroft, M.A., Kim, B., Park, W.-T., Melamuf, R., Agarwal, M., Partridge, G.Y.A., Lutz, M., and Kenny, T.W.: Long-term and accelerated life testing of a novel single-wafer vacuum encapsulation for MEMS resonators. J. Microelectromech. Syst. 15, 1446 (2006).CrossRefGoogle Scholar
13.Kim, B., Candler, R.N., Hopcroft, M.A., Agarwal, M., Park, W.-T., and Kenny, T.W.: Frequency stability of wafer-scale film encapsulated silicon based MEMS resonators. Sens Actuators A 136, 125 (2007).Google Scholar
14.Ng, E., Lee, H.K., Ahn, C.H., Melamud, R., and Kenny, T.W.: In Stability measurements of silicon MEMS resonant thermometers, 2011 IEEE Sensors Proc., Limerick, 2011; pp. 12571260.Google Scholar
15.Yang, Y., Ng, E.J., Chen, Y., Flader, I.B., and Kenny, T.W.: A unified epi-seal process for fabrication of high-stability microelectromechanical devices. J. Microelectromech. Syst. 25, 489 (2016).Google Scholar
16.Chen, Y., Flader, I.B., Shin, D.D., Ahn, C.H., Rodriguez, J., and Kenny, T.W.: Robust method of fabricating epitaxially encapsulated MEMS devices with large gaps. J. Microelectromech. Syst. 26, 1235 (2017).CrossRefGoogle Scholar
17.Flader, I.B., Chen, Y., Gerrard, D.D., and Kenny, T.W.: In Wafer-scale encapsulation of fully differential electrodes for mutli-axis inertial sensing, IEEE Transducers Proc., Kaohsiung, 2017; pp. 591594.Google Scholar
18.Heinz, D.B., Hong, V.A., Ahn, C.H., Ng, E.J., Yang, Y., and Kenny, T.W.: Experimental investigation into stiction forces and dynamic mechanical anti-stiction solutions in ultra-clean encapsulated MEMS devices. J. Microelectromech. Syst. 25, 469 (2016).CrossRefGoogle Scholar
19.Maboudian, R. and Howe, R. T.: Critical review: adhesion in surface micromechanical structures. J. Vac. Sci. Technol. B 15, 1 (1997).Google Scholar
20.Zhuang, Y. X. and Menon, A.: On the stiction of MEMS materials. Tribol. Lett. 19, 111 (2005).Google Scholar
21.Tanner, D.M., Walraven, J.A., Helgesen, K., Irwin, L.W., Brown, F., Smith, N.F., and Masters, N.: In MEMS reliability in shock environments, (Proc. 38th Annual IEEE Int. Reliability Physics Symp.), 2000; pp. 129138.Google Scholar
22.Hong, V.A., Yoneoka, S., Messana, M.W., Graham, A.B., Salvia, J.C., Branchflower, T.T., Ng, E., and Kenny, T.W.: Fatigue experiments on single crystal silicon in an oxygen-free environment. J. Microelectromech. Syst. 24, 351 (2015).CrossRefGoogle Scholar
23.Muhlstein, C.L., Stach, E.A., and Ritchie, R.O.: A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading. Acta Mater. 50, 3579 (2002).Google Scholar
24.Henke, B.L., Gullikson, E.M., and Davis, J.C.: X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30000 eV, Z = 1-92. At. Data Nucl. Data Tables 54, 181 (1993).Google Scholar
25.Liu, Y., Meirer, F., Williams, P.A., Wang, J., Andrews, J.C., and Pianetta, P.: TXM-Wizard: a program for advanced data collection and evaluation in full-field transmission x-ray microscopy. J. Synchroton. Radiat. 19, 281 (2012).Google Scholar
26.Christensen, D.L., Ahn, C.H., Hong, V.A., Ng, E.J., Yang, Y., Lee, B.J., and Kenny, T.W.: In Hermetically encapsulated differential resonant accelerometer, 2013 Transducers & Eurosensors: Solid-State Sensors, Actuators and Microsystems, 2013; pp. 606609.CrossRefGoogle Scholar
27.Shin, D.D., Ahn, C.H., Chen, Y., Christensen, D.L., Flader, I.B., and Kenny, T.W.: In Environmentally robust differential resonant accelerometer in a wafer-scale encapsulation process, 2017 IEEE MEMS Proceedings, Las Vegas, 2017; pp. 1720.Google Scholar
28.Flader, I.B., Chen, Y., Shin, D.D., Heinz, D.B., Comenencia Ortiz, L., Alter, A. L., Park, W., Goodson, K.E., and Kenny, T.W.: In Micro-tethering for in-process stiction mitigation of highly compliant structures, 2017 IEEE MEMS Proceedings, Las Vegas, 2017; pp. 675678.Google Scholar
29.Lee, M.M., Yao, J., and Wu, M.C.: In Silicon profile transformation and sidewall roughness reduction using hydrogen annealing, IEEE MEMS, 2005; pp. 596599.Google Scholar