Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T05:49:27.712Z Has data issue: false hasContentIssue false

Architected mechanical designs in tissue engineering

Published online by Cambridge University Press:  12 August 2020

Zacharias Vangelatos
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, CA94720, USA Laser Thermal Laboratory, University of California, Berkeley, CA94720, USA
Chenyan Wang
Affiliation:
Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY13244, USA
Zhen Ma
Affiliation:
Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY13244, USA
Costas P. Grigoropoulos*
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, CA94720, USA Laser Thermal Laboratory, University of California, Berkeley, CA94720, USA
*
Address all correspondence to Costas P. Grigoropoulos at [email protected]
Get access

Abstract

The deeper comprehension of biological phenomena has led to the pursuit of designing and architecting complex biological systems. This has been incorporated through the advances in bioprinting of artificial organs and implants even at the microscale. In addition, tissue modeling has been employed to understand and prevent malfunctional and detrimental mechanisms that lead to fatal diseases. Furthermore, the endeavor to convey the mechanical properties of both scaffolds and cells has enabled the unveiling of disease modeling and regenerative medicine. This paper aims to provide a brief review of the design, modeling and characterization of conventional and architected structures employed in bioengineering.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Li, L., Eyckmans, J., and Chen, C.S.: Designer biomaterials for mechanobiology. Nat. Mater. 16, 11641168 (2017).CrossRefGoogle ScholarPubMed
Polacheck, W.J., Kutys, M.L., Tefft, J.B., and Chen, C.S.: Microfabricated blood vessels for modelling the vascular transport barrier. Nat. Protoc. 14, 14251454 (2019).CrossRefGoogle Scholar
Skylar-Scott, M.A., Liu, M.-C., Wu, Y., Dixit, A., and Yanik, M.F.: Guided homing of cells in multi-photon microfabricated bioscaffolds. Adv. Healthcare Mater. 5, 12331243 (2016).CrossRefGoogle ScholarPubMed
Jeon, H., Koo, S., Reese, W.M., Loskill, P., Grigoropoulos, C.P., and Healy, K.E.: Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces. Nat. Mater. 14, 918923 (2015).CrossRefGoogle ScholarPubMed
Fu, J., Wang, Y.-K., Yang, M.T., Desai, R.A., Yu, X., Liu, Z., and Chen, C.S.: Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7, 733736 (2010).CrossRefGoogle ScholarPubMed
Vogel, V. and Sheetz, M.: Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265275 (2006).CrossRefGoogle ScholarPubMed
Santoro, F., Zhao, W., Joubert, L.-M., Duan, L., Schnitker, J., van de Burgt, Y., Lou, H.-Y., Liu, B., Salleo, A., Cui, L., Cui, Y., and Cui, B.: Revealing the cell–material interface with nanometer resolution by focused ion beam/scanning electron microscopy. ACS Nano 11, 83208328 (2017).CrossRefGoogle ScholarPubMed
Satcher, R.L. Jr and Dewey, C.F. Jr: Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophys. J. 71, 109118 (1996).CrossRefGoogle ScholarPubMed
Iannone, M., Ventre, M., Formisano, L., Casalino, L., Patriarca, E.J., and Netti, P.A.: Nanoengineered surfaces for focal adhesion guidance trigger mesenchymal stem cell self-organization and tenogenesis. Nano Lett. 15, 15171525 (2015).CrossRefGoogle ScholarPubMed
Storm, C., Pastore, J.J., MacKintosh, F.C., Lubensky, T.C., and Janmey, P.A.: Nonlinear elasticity in biological gels. Nature 435, 191194 (2005).CrossRefGoogle ScholarPubMed
Burridge, K. and Wodnicka, M.C.: Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 12, 463518 (1996).CrossRefGoogle ScholarPubMed
Discher, D.E., Janmey, P., and Wang, Y.-l.: Tissue cells feel and respond to the stiffness of their substrate. Science 310, 11391143 (2005).CrossRefGoogle ScholarPubMed
Yeung, T., Georges, P.C., Flanagan, L.A., Marg, B., Ortiz, M., Funaki, M., Zanir, M., Ming, W., Weaver, V., and Janmey, P.A.: Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cytoskeleton 60, 2434 (2005).CrossRefGoogle ScholarPubMed
Pennachio, F.A., Caliendo, F., Iaccarino, G., Langella, A., Siciliano, V., and Santoro, F.: Three-dimensionally patterned scaffolds modulate the biointerface at the nanoscale. Nano Lett. 19, 51185123 (2019).CrossRefGoogle Scholar
Zhao, W., Hanson, L., Lou, H.-Y., Akamatsu, M., Chowdary, P.D., Santoro, F., Marks, J.R., Grassart, A., Drubin, D.G., Cui, Y., and Cui, B.: Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. Nat. Nanotechnol. 12, 750756 (2017).CrossRefGoogle ScholarPubMed
Bettinger, C.J., Langer, R., and Borenstein, J.T.: Engineering substrate topography at the micro- and nanoscale to control cell function. Angew. Chem. 48, 54065415 (2009).CrossRefGoogle ScholarPubMed
Fendler, C., Denker, C., Harberts, J., Bayat, P., Zierold, R., Loers, G., Munzenberg, M., and Blick, R.H.: Microscaffolds by direct laser writing for neurite guidance leading to tailor-made neuronal networks. Adv. Biosyst. 3, 1800329 (2019).CrossRefGoogle ScholarPubMed
Kapyla, E., Aydogan, D.B., Virjula, S., Vanhatupa, S., Miettinen, S., Hyttiten, J., and Kellomaki, M.: Direct laser writing and geometrical analysis of scaffolds with designed pore architecture for three-dimensional cell culturing. J. Micromech. Microeng. 22, 115016 (2012).CrossRefGoogle Scholar
Turunen, S., Joki, T., Hitunen, M.L., Ihalainen, T.O., Narkilahti, S., and Kellomaki, M.: direct laser writing of tubular microtowers for 3D culture of human pluripotent stem cell-derived neuronal cells. ACS Appl. Mater. Interfaces 9, 2571725730 (2017).CrossRefGoogle ScholarPubMed
Iandolo, D., Pennacchio, F.A., Mollo, V., Rossi, D., Dannhauser, D., Cui, B., Owens, R.M., and Santoro, F.: Electron microscopy for 3D scaffolds–cell biointerface characterization. Adv. Biosyst. 3, 180013 (2019).Google ScholarPubMed
Ma, Z., Huebsch, N., Koo, S., Mandegar, M.A., Siemons, B., Boggess, S., Conklin, B.R., Grigoropoulos, C.P., and Healy, K.E.: Contractile deficits in engineered cardiac microtissues as a result of MYBPC3 deficiency and mechanical overload. Nat. Biomed. Eng. 2, 955967 (2018).CrossRefGoogle ScholarPubMed
Pathak, A., Deshpande, V.S., McMeeking, R.M., and Evans, A.G.: The simulation of stress fibre and focal adhesion development in cells on patterned substrates. J. R. Soc. Interface 5, 507524 (2008).CrossRefGoogle ScholarPubMed
Deshpande, V.S., McMeeking, R.M., and Evans, A.G.: A bio-chemo-mechanical model for cell contractility. PNAS 103, 1401514020 (2006).CrossRefGoogle ScholarPubMed
Thavandiran, N., Diubois, N., Mikryukov, A., Masse, S., Beca, B., Simmons, C.A., Deshpande, V.S., McGarry, J.P., Chen, C.S., Nanthakumar, K., Keller, G.M., Radisic, M., and Zandstra, P.W.: Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. PNAS 110, E4698E4707 (2013).CrossRefGoogle ScholarPubMed
Sakellari, I., Kabouraki, E., Gray, D., Purlys, V., Fotakis, C., Pikulin, A., Bityurin, N., Vamvakaki, M., and Farsari, M.: Diffusion-assisted high-resolution direct femtosecond laser writing. ACS Nano 6, 23022311 (2012).CrossRefGoogle ScholarPubMed
Wang, C., Koo, S., Park, M., Vangelatos, Z., Hoang, P., Conklin, B.R., Grigoropoulos, C.P., Healy, K.E., and Ma, Z.: Maladaptive contractility of 3D human cardiac microtissues to mechanical nonuniformity. Adv. Healthcare Mater. 9, 1901373 (2020).CrossRefGoogle ScholarPubMed
Soman, P., Fozdar, D.Y., Lee, J.W., Phadke, A., Varghese, S., and Chen, S.: A three-dimensional polymer scaffolding material exhibiting a zero Poisson's ratio. Soft Matter 8, 49464951 (2012).CrossRefGoogle ScholarPubMed
Zadpoor, A.A.: Meta-biomaterials. Biomater. Sci. 8, 1838 (2020).CrossRefGoogle Scholar
Yildizdag, M.E., Tran, C.A., Barchiesi, E., Spagnuolo, M., dell'Isola, F., and Hild, F.: A multi-disciplinary approach for mechanical metamaterial synthesis: a hierarchical modular multiscale cellular structure paradigm. In State of the Art and Future Trends in Material Modeling. Advanced Structured Materials, Vol. 100 (Springer, Cham, 2019).Google Scholar
Bobbert, F.S.L., Janbaz, S., van Manen, T., Li, Y., and Zadpoor, A.A.: Russian doll deployable meta-implants: fusion of kirigami, origami, and multi-stability. Mater. Design 191, 108624 (2020).CrossRefGoogle Scholar
Bobbert, F.S.L., Janbaz, S., and Zadpoor, A.A.: Towards deployable meta-implants. J. Mater. Chem. B 6, 34493455 (2018).CrossRefGoogle ScholarPubMed
Mardling, P., Alderson, A., Jordan-Mahy, N., and Maitre, C.L.L.: The use of auxetic materials in tissue engineering. Biomater. Sci. 8, 20742083 (2020).CrossRefGoogle ScholarPubMed
Jeon, H., Hidai, H., Hwang, D.J., and Grigoropoulos, C.P.: Fabrication of arbitrary polymer patterns for cell study by two-photon polymerization process. J. Biomed. Mater. Res. 93A, 5566 (2010).Google Scholar
Swift, J., Ivanovska, I.L., Buxboim, A., Harada, T., Dingal, P.C.D.P., Printer, J., Pajerowski, J.D., Splinler, K.R., Shin, J.W., Tewari, M., Rehfeldt, F., Speicher, D.W., and Discher, D.E.: Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).CrossRefGoogle ScholarPubMed
Polacheck, W.J. and Chen, C.S.: Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13, 415423 (2016).CrossRefGoogle ScholarPubMed
Eyckmans, J., Boudou, T., Yu, X., and Chen, C.S.: A Hitchhiker's guide to mechanobiology. Dev. Cell 21, 3547 (2011).CrossRefGoogle ScholarPubMed
Mohrdieck, C., Wanner, A., Roos, W., Roth, A., Sackmann, E., Spatz, J.P., and Arzt, E.: A theoretical description of elastic pillar substrates in biophysical experiments. ChemPhysChem 6, 14921498 (2005).CrossRefGoogle ScholarPubMed
Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. B 126, 136195 (1938).Google Scholar
Jeon, H., Hidai, H., Hwang, D.J., Healey, K.E., and Grigoropoulos, C.P.: The effect of micronscale anisotropic cross patterns on fibroblast migration. Biomaterials 31, 42864295 (2010).CrossRefGoogle ScholarPubMed
Hidai, H., Jeon, H., Hwang, D.J., and Grigoropoulos, C.P.: Self-standing aligned fiber scaffold fabrication by two photon photopolymerization. Biomed. Microdevices 11, 643652 (2009).CrossRefGoogle ScholarPubMed
Jeon, H., Kim, E., and Grigoropoulos, C.P.: Measurement of contractile forces generated by individual fibroblasts on self-standing fiber scaffolds. Biomed. Microdevices 13, 107115 (2011).CrossRefGoogle ScholarPubMed
Boudou, T., Legant, W.R., Mu, A., Borochin, M.A., Thavandiran, N., Radisic, M., Zandstra, P.W., Epstein, J.A., Marguilies, K.B., and Chen, C.S.: A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng. A 18, 910919 (2011).CrossRefGoogle Scholar
Abramson, S.V., Burke, J.F., Kelly, J.J., Kitchen, J.G. III, Dougherty, M.J., Yih, D.F., McGeehin, F.C. III, Shuck, J.W., and Phiambolis, T.P.: Pulmonary hypertension predicts mortality and morbidity in patients with dilated cardiomyopathy. Ann. Intern. Med. 116, 888895 (1992).CrossRefGoogle ScholarPubMed
Sadeghi, A.H., Shin, S.R., Deddens, J.C., Fratta, G., Mandla, S., Yazdi, I.J.K., Prakash, G., Antona, S., Demarchi, D., Buijsrogge, M.P., Sluijter, J.P.G., Hjortnaes, J., and Khademhosseini, A.: Engineered 3D cardiac fibrotic tissue to study fibrotic remodeling. Adv. Healthcare Mater. 6, 1601434 (2017).CrossRefGoogle ScholarPubMed
Dendukuri, D., Pregibon, D.C., Collins, J., Hatton, T.A., and Doyle, P.S.: Continuous-flow lithography for high-throughput microparticle synthesis. Nat. Mater. 5, 365369 (2006).CrossRefGoogle ScholarPubMed
Yin, H., Ding, Y., Zhai, Y., Tan, W., and Yin, X.: Orthogonal programming of heterogeneous micro-mechano-environments and geometries in three-dimensional bio-stereolithography. Nat. Commun. 9, 4096 (2018).CrossRefGoogle ScholarPubMed
Warner, J.J., Gillies, A.R., Hwang, H.H., Zhang, H., Lieber, R.L., and Chen, S.: 3D-printed biomaterials with regional auxetic properties. J. Mech. Behav. Biomed. Mater. 76, 145152 (2017).CrossRefGoogle ScholarPubMed
Flamourakis, G., Spanos, I., Vangelatos, Z., Manganas, P., Papadimitriou, L., Grigoropoulos, C., Ranella, A., and Farsari, M.: Laser-made 3D auxetic metamaterial scaffolds for tissue engineering applications. Macromol. Mater. Eng. (2020). doi:10.1002/mame.202000238.CrossRefGoogle Scholar
Maggi, A., Li, H., and Greer, J.R.: Three-dimensional nano-architected scaffolds with tunable stiffness for efficient bone tissue growth. Acta Biomater. 63, 294305 (2017).CrossRefGoogle ScholarPubMed
Mahumane, G.D., Kumar, P., du Toit, L.C., Choonara, Y.E., and Pillay, V.: 3D scaffolds for brain tissue regeneration: architectural challenges. Biomater. Sci. 6, 28122837 (2018).CrossRefGoogle ScholarPubMed
Ma, H., Killaars, A.R., DelRio, F.W., Yang, C., and Anseth, K.S.: Myofibroblastic activation of valvular interstitial cells is modulated by spatial variations in matrix elasticity and its organization. Biomaterials 131, 131144 (2017).CrossRefGoogle ScholarPubMed
Bertoldi, K., Vitelli, V., Christensen, J., and van Hecke, M.: Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 111 (2017).CrossRefGoogle Scholar
Bauer, J., Meza, L.R., Schaedler, T.A., Schwaiger, R., Zheng, X., and Valdevit, L.: Nanolattices: an emerging class of mechanical metamaterials. Adv. Mater. 29, 1701850 (2017).CrossRefGoogle ScholarPubMed
Fraternali, F. and Amendola, A.: Mechanical modeling of innovative metamaterials alternating pentamode lattices and confinement plates. J. Mech. Phys. Solids 99, 259271 (2017).CrossRefGoogle Scholar
Berger, J.B., Wadley, H.N.G., and McMeeking, R.M.: Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature 543, 533537 (2017).CrossRefGoogle ScholarPubMed
Mirzaali, M.J., Caracciolo, A., Pahlavani, H., Janbaz, S., Vergani, L., and Zadpoor, A.A.: Multi-material 3D printed mechanical metamaterials: rational design of elastic properties through spatial distribution of hard and soft phases. Appl. Phys. Lett. 113, 241903 (2018).CrossRefGoogle Scholar
Pok, S., Myers, J.D., Madihally, S.V., and Jacot, J.G.: A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering. Acta Biomater. 9, 56305642 (2013).CrossRefGoogle ScholarPubMed
Kennedy, K.M., Bhaw-Luximon, A., and Jhurry, D.: Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance. Acta Biomater. 50, 4155 (2017).CrossRefGoogle ScholarPubMed
Kadic, M., Bückmann, T., Schittny, R., Gumbsch, P., and Wegener, M.: Pentamode metamaterials with independently tailored bulk modulus and mass density. Phys. Rev. Appl. 2, 054007 (2014).CrossRefGoogle Scholar
Rosso, F., Giordano, A., Barbarisi, M., and Barbarisi, A.: From cell–ECM interactions to tissue engineering. J. Cell. Physiol. 199, 174180 (2004).CrossRefGoogle ScholarPubMed
Uto, K., Tsui, J.H., DeForest, C.A., and Kim, D.-H.: Dynamically tunable cell culture platforms for tissue engineering and mechanobiology. Prog. Polym. Sci. 65, 5382 (2017).CrossRefGoogle ScholarPubMed
Corbin, E.A., Vite, A., Peyster, E.G., Bhoopalam, M., Brandimarto, J., Wang, X., Bennett, A.I., Clark, A.T., Cheng, X., Turner, K.T., Musunuru, K., and Margulies, K.B.: Tunable and reversible substrate stiffness reveals a dynamic mechanosensitivity of cardiomyocytes. ACS Appl. Mater. Interfaces 11, 2060320614 (2019).CrossRefGoogle ScholarPubMed
Chandorkar, Y., Nava, A.C., Scheizerhof, S., Dongen, M.V., Haraszti, T., Köhler, J., Zhang, H., Windoffer, R., Mourran, A., Möller, M., and De Laporte, L.: Cellular responses to beating hydrogels to investigate mechanotransduction. Nat. Commun. 10, 4027 (2019).CrossRefGoogle ScholarPubMed
Mengsteab, P.Y., Uto, K., Smith, A.S.T., Frankel, S., Fisher, E., Nawas, Z., Macadangdang, J., Ebara, M., and Kim, D.-H.: Spatiotemporal control of cardiac anisotropy using dynamic nanotopographic cues. Biomaterials 86, 110 (2016).CrossRefGoogle ScholarPubMed
DeForest, C.A. and Tirrell, D.A.: A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. Nat. Mater. 14, 523531 (2015).CrossRefGoogle ScholarPubMed
Chaudhuri, O., Gu, L., Klumpers, D., Darnell, M., Bencherif, S.A., Weaver, J.C., Huebsch, N., Lee, H.-p., Lippens, E., Duda, G.N., and Mooney, D.J.: Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326334 (2016).CrossRefGoogle ScholarPubMed
Tseng, L.-F., Mather, P.T., and Henderson, J.H.: Shape-memory-actuated change in scaffold fiber alignment directs stem cell morphology. Acta Biomater. 9, 87908801 (2013).CrossRefGoogle ScholarPubMed
Sun, S., Shi, H., Moore, S., Wang, C., Ash-Shakoor, A., Mather, P.T., Henderson, J.H., and Ma, Z.: Progressive myofibril reorganization of human cardiomyocytes on a dynamic nanotopographic substrate. ACS Appl. Mater. Interfaces 12, 2145021462 (2020).CrossRefGoogle ScholarPubMed
Yang, C., Boorugu, M., Dopp, A., Ren, J., Martin, R., Han, D., Choi, W., and Lee, H.: 4D printing reconfigurable, deployable and mechanically tunable metamaterials. Mater. Horiz. 6, 12441250 (2019).CrossRefGoogle Scholar
van der Stok, J., Wang, H., Yavari, S.A., Siebelt, M., Sandker, M., Waarsing, J.H., Verhaar, J.A.N., Jahr, H., Zadpoor, A.A., Leeuwenburgh, S.C.G., and Weinans, H.: Enhanced bone regeneration of cortical segmental bone defects using porous titanium scaffolds incorporated with colloidal gelatin gels for time and dose-controlled delivery of dual growth factors. Tissue Eng. A 19, 26052617 (2013).CrossRefGoogle ScholarPubMed
Barthelata, F., Tang, H., Zavattieri, P.D., Li, C.-M., and Espinosa, H.D.: On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J. Mech. Phys. Solids 55, 306337 (2007).CrossRefGoogle Scholar
Noah, R.L., Hanratty, C., and Walsh, S.J.: Clinical impact of stent design. Interv. Cardiol. Rev. 9, 8993 (2014).Google Scholar
Vangelatos, Z., Gu, G.X., and Grigoropoulos, C.P.: Architected metamaterials with tailored 3D buckling mechanisms at the microscale. Extreme Mech. Lett. 33, 100580 (2019).CrossRefGoogle Scholar
Leeflang, S., Janbaz, S., and Zadpoor, A.A.: Metallic clay. Addit. Manuf. 28, 528535 (2019).Google Scholar
Vangelatos, Z., Melissinaki, V., Farsari, M., Komvopoulos, K., and Grigoropoulos, C.: Intertwined microlattices greatly enhance the performance of mechanical metamaterials. Math. Mech. Solids 24, 26362648 (2019).CrossRefGoogle Scholar
Al-Ketan, O. and Al-Rub, R.K.A.: Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices. Adv. Eng. Mater. 21, 1900524 (2019).CrossRefGoogle Scholar
Bhullar, S.K., Rana, D., Lekesiz, H., Bedeloglu, A.C., Ko, J., Cho, Y., Ayatac, Z., Uyar, T., Jun, M., and Ramalingam, M.: Design and fabrication of auxetic PCL nanofiber membranes for biomedical applications. Mater. Sci. Eng. C 81, 334340 (2017).CrossRefGoogle ScholarPubMed