Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T12:33:28.703Z Has data issue: false hasContentIssue false

Anode performance of hydrothermally grown carbon nanostructures and their molybdenum chalcogenides for Li-ion batteries

Published online by Cambridge University Press:  03 May 2018

Hamza Simsir
Affiliation:
Department of Metallurgical and Materials Engineering, Karabuk University, 78050 Karabuk, Turkey Institute of Inorganic Chemistry, University of Cologne Greinstrasse 6, D-50939 Cologne, Germany
Nurettin Eltugral*
Affiliation:
Department of Metallurgical and Materials Engineering, Karabuk University, 78050 Karabuk, Turkey
Robert Frohnhoven
Affiliation:
Institute of Inorganic Chemistry, University of Cologne Greinstrasse 6, D-50939 Cologne, Germany
Tim Ludwig
Affiliation:
Institute of Inorganic Chemistry, University of Cologne Greinstrasse 6, D-50939 Cologne, Germany
Yakup Gönüllü
Affiliation:
Institute of Inorganic Chemistry, University of Cologne Greinstrasse 6, D-50939 Cologne, Germany
Selhan Karagoz
Affiliation:
Department of Chemistry, Karabuk University, 78050 Karabuk, Turkey
Sanjay Mathur
Affiliation:
Institute of Inorganic Chemistry, University of Cologne Greinstrasse 6, D-50939 Cologne, Germany
*
Address all correspondence to Nurettin Eltugral at [email protected]
Get access

Abstract

Three different hydrothermally grown carbonaceous materials and their molybdenum chalcogenides derived from glucose (HTC, HTC–MoO2, HTC–MoS2) were investigated to evaluate their potential as Li-ion battery anodes. All tested materials exhibited good cycling performance at a current density of 100 mA/g and showed high coulombic efficiency, >98%, after the 50th cycle. Reversible charge capacities of HTC, HTC–MoO2, and HTC–MoS2 were 296, 266, and 484 mAh/g, respectively, after 50 successive cycles. This study demonstrated that the HTC–MoS2 showed the highest reversible charge capacity which promises to be a good candidate for an environmentally friendly anode material for Li-ion batteries.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Scrosati, B., Hassoun, J., and Sun, Y.-K.: Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4, 3287 (2011).CrossRefGoogle Scholar
2.Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004).Google Scholar
3.Kim, H., Kim, H., Kim, S.-W., Park, K.-Y., Kim, J., Jeon, S., and Kang, K.: Nano-graphite platelet loaded with LiFePO4 nanoparticles used as the cathode in a high performance Li-ion battery. Carbon N. Y. 50, 1966 (2012).Google Scholar
4.Shi, Y., Guo, B., Corr, S.A., Shi, Q., Hu, Y.-S., Heier, K.R., Chen, L., Seshadri, R., and Stucky, G.D.: Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett. 9, 4215 (2009).CrossRefGoogle ScholarPubMed
5.Waller, G.H., Lai, S.Y., Rainwater, B.H., and Liu, M.: Hydrothermal synthesis of LiMn2O4 onto carbon fiber paper current collector for binder free lithium-ion battery positive electrodes. J. Power Sour. 251, 411 (2014).Google Scholar
6.Fang, W., Zhao, H., Xie, Y., Fang, J., Xu, J., and Chen, Z.: Facile hydrothermal synthesis of VS2/graphene nanocomposites with superior high-rate capability as lithium-ion battery cathodes. ACS Appl. Mater. Interfaces 7, 13044 (2015).Google Scholar
7.Agostini, M., Brutti, S., and Hassoun, J.: High voltage Li-ion battery using exfoliated graphite/graphene nanosheets anode. ACS Appl. Mater. Interfaces 8, 10850 (2016).CrossRefGoogle ScholarPubMed
8.Büyükyazi, M., and Mathur, S.: 3D nanoarchitectures of α-LiFeO2 and α-LiFeO2/C nanofibers for high power lithium-ion batteries. Nano Energy 13, 28 (2015).Google Scholar
9.Chen, Y., Di, X., Ma, C., Zhu, C., Gao, P., Li, J., Sun, C., and Ouyang, Q.: Graphene–MoO2 hierarchical nanoarchitectures: in situ reduction synthesis and high rate cycling performance as lithium-ion battery anodes. RSC Adv. 3, 17659 (2013).CrossRefGoogle Scholar
10.Zeng, L., Zheng, C., Deng, C., Ding, X., and Wei, M.: MoO2-ordered mesoporous carbon nanocomposite as an anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 2182 (2013).Google Scholar
11.Xiang, J., Dong, D., Wen, F., Zhao, J., Zhang, X., Wang, L., and Liu, Z.: Microwave synthesized self-standing electrode of MoS2 nanosheets assembled on graphene foam for high-performance Li-ion and Na-ion batteries. J. Alloys Compd. 660, 11 (2016).Google Scholar
12.Liu, H., Chen, X., Deng, L., Su, X., Guo, K., and Zhu, Z.: Preparation of ultrathin 2D MoS2/graphene heterostructure assembled foam-like structure with enhanced electrochemical performance for lithium-ion batteries. Electrochim. Acta 206, 184 (2016).Google Scholar
13.Cohn, A.P., Oakes, L., Carter, R., Chatterjee, S., Westover, A.S., Share, K., and Pint, C.L.: Assessing the improved performance of freestanding, flexible graphene and carbon nanotube hybrid foams for lithium ion battery anodes. Nanoscale. 6, 4669 (2014).Google Scholar
14.Simsir, H., Eltugral, N., and Karagoz, S.: Hydrothermal carbonization for the preparation of hydrochars from glucose, cellulose, chitin, chitosan and wood chips via low-temperature and their characterization. Bioresour. Technol. 246(Suppl. C), 82 (2017).Google Scholar
15.Wang, Q., Li, H., Chen, L., and Huang, X.: Monodispersed hard carbon spherules with uniform nanopores. Carbon N. Y. 39, 2211 (2001).Google Scholar
16.Titirici, M.M., White, R.J., Brun, N., Budarin, V.L., Su, D.S., del Monte, F., Clark, J.H., and MacLachlan, M.J.: Sustainable carbon materials. Chem. Soc. Rev. 44, 250 (2015).Google Scholar
17.Ihsan, M., Wang, H., Majid, S.R., Yang, J., Kennedy, S.J., Guo, Z., and Liu, H.K.: MoO2/Mo2C/C spheres as anode materials for lithium ion batteries. Carbon N. Y. 96, 1200 (2016).Google Scholar
18.Sun, Y., Hu, X., Luo, W., and Huang, Y.: Ultrafine MoO2 nanoparticles embedded in a carbon matrix as a high-capacity and long-life anode for lithium-ion batteries. J. Mater. Chem. 22, 425 (2012).CrossRefGoogle Scholar
19.Yang, L., Liu, L., Zhu, Y., Wang, X., and Wu, Y.: Preparation of carbon coated MoO2 nanobelts and their high performance as anode materials for lithium ion batteries. J. Mater. Chem. 22, 13148 (2012).Google Scholar
20.Bhaskar, A., Deepa, M., and Narasinga Rao, T.: MoO2/multiwalled carbon nanotubes (MWCNT) hybrid for use as a Li-ion battery anode. ACS Appl. Mater. Interfaces 5, 2555 (2013).CrossRefGoogle ScholarPubMed
21.Yuan, G., Wang, G., Wang, H., and Bai, J.: Half-cell and full-cell investigations of 3D hierarchical MoS2/graphene composite on anode performance in lithium-ion batteries. J. Alloys Compd. 660, 62 (2016).Google Scholar
22.Das, S.K.: Coaxial growth of carbon coated MoS2 nanoparticles on carbon nanotube and their electrochemical evaluation. Mater. Lett. 130, 240 (2014).Google Scholar
23.Wang, Z., Wei, G., Ozawa, K., Cai, Y., Cheng, Z., and Kimura, H.: Nanoporous MoS2/C composites for high performance lithium ion battery anode material. Electrochim. Acta 239, 74 (2017).Google Scholar
24.Li, Z., Xu, Z., Tan, X., Wang, H., Holt, C.M., Stephenson, T., Olsen, B.C., and Mitlin, D.: Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ. Sci. 6, 871 (2013).Google Scholar
25.Xing, Z., Ju, Z., Zhao, Y., Wan, J., Zhu, Y., Qiang, Y., and Qian, Y.: One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Sci. Rep. 6, 1 (2016).CrossRefGoogle ScholarPubMed
26.Auborn, J.J., and Barberio, Y.L.: Lithium intercalation cells without metallic lithium. J. Electrochem. Soc. USA 134, 638 (1987).Google Scholar
27.Ma, L., Zhou, X., Xu, L., Xu, X., Zhang, L., and Chen, W.: Chitosan-assisted fabrication of ultrathin MoS2/graphene heterostructures for Li-ion battery with excellent electrochemical performance. Electrochim. Acta 167, 39 (2015).Google Scholar
28.Xiao, J., Choi, D., Cosimbescu, L., Koech, P., Liu, J., and Lemmon, J.P.: Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem. Mater. 22, 4522 (2010).Google Scholar
29.Liu, H., Su, D., Zhou, R., Sun, B., Wang, G., and Qiao, S.Z.: Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2, 970 (2012).Google Scholar
Supplementary material: File

Simsir et al. supplementary material

Simsir et al. supplementary material 1

Download Simsir et al. supplementary material(File)
File 1 MB