Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T10:48:42.051Z Has data issue: false hasContentIssue false

Uncertainty quantification of Kinetic Monte Carlo models constructed on-the-fly using molecular dynamics

Published online by Cambridge University Press:  11 May 2018

Abhijit Chatterjee*
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
*
Address all correspondence to Abhijit Chatterjee at [email protected]
Get access

Abstract

Kinetic Monte Carlo (KMC) models of complex materials and biomolecules are increasingly being constructed using molecular dynamics (MD). A KMC model contains a catalog of states and kinetic pathways, which enables study of the dynamics. The completeness of the catalog is crucial to the model accuracy and is linked to the quality of the MD data used for model construction. Therefore, quantifying the uncertainty due to missing states and pathways is important. A review on computational procedures available for on-the-fly KMC model construction using MD, uncertainty measurement, and algorithms for guiding further MD sampling in an accelerated manner is presented.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chatterjee, A. and Vlachos, D.G.: An overview of spatial microscopic and accelerated Kinetic Monte Carlo methods. J. Comput. Aided Mater. Des. 14(2), 253 (2007).Google Scholar
2.Voter, A.F.: Introduction to the kinetic Monte Carlo method. In Radiat. Eff. Solids, edited by Sickafus, K.E., Kotomin, E.A., and Uberuaga, B.P. (Springer, NATO Publishing unit, Dordrecht, 2006).Google Scholar
3.Schwantes, C.R., McGibbon, R.T., and Pande, V.S.: Perspective: Markov models for long-timescale biomolecular dynamics. J. Chem. Phys. 141(9), 90901 (2014).Google Scholar
4.Ziff, R.M., Gulari, E., and Barshad, Y.: Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56(24), 2553 (1986).Google Scholar
5.Gilmer, G.H., Huang, H.C., de la Rubia, T.D., Dalla Torre, J., and Baumann, F.: Lattice Monte Carlo models of thin film deposition. Thin Solid Films 365(2), 189 (2000).Google Scholar
6.Henkelman, G. and Jonsson, H.: Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. J. Chem. Phys. 115, 9657 (2001).Google Scholar
7.Chatterjee, A. and Bhattacharya, S.: Uncertainty in a Markov state model with missing states and rates: application to a room temperature kinetic model obtained using high temperature molecular. J. Chem. Phys. 143(11), 114109 (2015).Google Scholar
8.Bhoutekar, A., Ghosh, S., Bhattacharya, S., and Chatterjee, A.: A new class of enhanced kinetic sampling methods for building Markov state models. J. Chem. Phys. 147(15), 152702 (2017).Google Scholar
9.Chatterjee, A.: Accelerating rare events and building kinetic Monte Carlo models using temperature programmed molecular dynamics. J. Mater. Res. 33(7), 835 (2017).Google Scholar
10.Frenkel, D. and Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, New York, 1996).Google Scholar
11.Pande, V.S., Beauchamp, K., and Bowman, G.R.: Everything you wanted to know about Markov State Models but were afraid to ask. Methods 52(1), 99 (2010).Google Scholar
12.Prinz, J.-H., Wu, H., Sarich, M., Keller, B., Senne, M., Held, M., Chodera, J.D., Schütte, C., and Noé, F.: Markov models of molecular kinetics: generation and validation. J. Chem. Phys. 134(17), 174105 (2011).Google Scholar
13.Haldar, P. and Chatterjee, A.: Seeking kinetic pathways relevant to the structural evolution of metal nanoparticles. Model. Simul. Mater. Sci. Eng. 23(2), 25002 (2015).Google Scholar
14.Haldar, P. and Chatterjee, A.: Connectivity-list based characterization of 3D nanoporous structures formed via selective dissolution. Acta Mater. 127, 379 (2017).Google Scholar
15.Chill, S.T. and Henkelman, G.: Molecular dynamics saddle search adaptive kinetic Monte Carlo. J. Chem. Phys. 140(21), 214110 (2014).Google Scholar
16.Bhute, V.J. and Chatterjee, A.: Building a kinetic Monte Carlo model with a chosen accuracy. J. Chem. Phys. 138, 244112 (2013).Google Scholar
17.Bhute, V.J. and Chatterjee, A.: Accuracy of a Markov state model generated by searching for basin escape pathways. J. Chem. Phys. 138, 84103 (2013).Google Scholar
18.Sorenson, M.R. and Voter, A.F.: Temperature-accelerated dynamics for simulation of infrequent events. J. Chem. Phys. 112(21), 9599 (2000).Google Scholar
19.Boulougouris, G.C. and Frenkel, D.: Monte Carlo sampling of a Markov web. J. Chem. Theory Comput. 1(3), 389 (2005).Google Scholar
20.Boulougouris, G.C. and Theodorou, D.N.: Dynamical integration of a Markovian web: a first passage time approach. J. Chem. Phys. 127, 84903 (2007).Google Scholar
21.Xu, L. and Henkelman, G.: Adaptive kinetic Monte Carlo for first-principles accelerated dynamics. J. Chem. Phys. 129, 114104 (2008).Google Scholar
22.Wales, D.J.: Energy landscapes: calculating pathways and rates. Int. Rev. Phys. Chem. 25(1–2), 237 (2006).Google Scholar
23.Konwar, D., Bhute, V.J., and Chatterjee, A.: An off-lattice, self-learning kinetic Monte Carlo method using local environments. J. Chem. Phys. 135, 174103 (2011).Google Scholar
24.Verma, S., Rehman, T., and Chatterjee, A.: A cluster expansion model for rate constants of surface diffusion processes on Ag, Al, Cu, Ni, Pd and Pt (100) surfaces. Surf. Sci. 613, 114 (2013).Google Scholar
25.Rehman, T., Jaipal, M., and Chatterjee, A.: A cluster expansion model for predicting the activation barrier of atomic processes. J. Comput. Phys. 243, 244 (2013).Google Scholar
26.Kulkarni, N. and Chatterjee, A.: Capturing local atomic environment dependence of activation barriers in metals using cluster expansion models. J. Phys. Conf. Ser. 759(1), 12041 (2016).Google Scholar
27.Ghosh, S., Chatterjee, A., and Bhattacharya, S.: Time-dependent Markov State Models for single molecule force spectroscopy. J. Chem. Theory Comput. 13(3), 957 (2017).Google Scholar
28.Voter, A.F., Montalenti, F., and Germann, T.C.: Extending the time scales in atomistic simulation of materials. Annu. Rev. Mater. Res. 32, 321 (2002).Google Scholar
29.Béland, L.K., Brommer, P., El-Mellouhi, F., Joly, J.-F., and Mousseau, N.: Kinetic activation-relaxation technique. Phys. Rev. E 84(4), 46704 (2011).Google Scholar
30.Miron, R. and Fichthorn, K.A.: Accelerated molecular dynamics with the bond-boost method. J. Chem. Phys. 119(12), 6210 (2003).Google Scholar
31.Laio, A. and Parrinello, M.: Escaping free-energy minima. Proc. Natl. Acad. Sci. USA 99(20), 12562 (2002).Google Scholar
32.Chatterjee, A. and Bhattacharya, S.: Probing the energy landscape of alanine dipeptide and deca-alanine using temperature as a tunable parameter in molecular dynamics. J. Phys. Conf. Ser. 759(1), 12024 (2016).Google Scholar
33.Swinburne, T.D. and Perez, D.: Self-optimized construction of transition rate matrices from accelerated atomistic simulations with Bayesian uncertainty quantification. arXiv:1803.05273v1 (2018).Google Scholar
34.Divi, S. and Chatterjee, A.: Accelerating rare events while overcoming the low-barrier problem using a temperature program. J. Chem. Phys. 140(18), 184115 (2014).Google Scholar
35.Imandi, V. and Chatterjee, A.: Estimating Arrhenius parameters using temperature programmed molecular dynamics. J. Chem. Phys. 145(3), 34104 (2016).Google Scholar
Supplementary material: PDF

Chatterjee supplementary material

Chatterjee supplementary material 1

Download Chatterjee supplementary material(PDF)
PDF 828.3 KB