Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T07:46:17.307Z Has data issue: false hasContentIssue false

Three-dimensional nanostructures from porous anodic alumina

Published online by Cambridge University Press:  27 April 2012

Maria R. Lukatskaya*
Affiliation:
Department of Materials Science and Engineering, A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, Pennsylvania 19104
Yury Gogotsi*
Affiliation:
Department of Materials Science and Engineering, A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, Pennsylvania 19104
*
*Address all correspondence to Maria R. Lukatskaya and Yury Gogotsi at [email protected] and [email protected]
*Address all correspondence to Maria R. Lukatskaya and Yury Gogotsi at [email protected] and [email protected]
Get access

Abstract

We report on the synthesis of unique tetragonal nanostructures from porous anodic aluminum oxide that enables geometrical three-dimensional (3D) microdesign of the porous surfaces. Scanning electron microscopy study revealed self-organization of hollow oxide nanostructures into hierarchical arrays. The formation of these structures has a localized nature and is associated with local electrical break-down during hard anodization of aluminum in oxalic acid solution. Moreover, in this communication we propose the mechanism of the nucleation and growth of complex 3D structures from porous anodic alumina.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pollak, C.: Anodised electrical condensers und current directing devices. British Patent No. 933, 1898.Google Scholar
2.O'Sullivan, J.P. and Wood, G.C.: The morphology and mechanism of formation of porous anodic films on aluminium. Proc. R. Soc. London, Ser. A 317, 511 (1970).Google Scholar
3.Diggle, J.W., Downie, T.C., and Goulding, C.W.: Anodic oxide films on aluminum. Chem. Rev. 69, 365 (1969).Google Scholar
4.Hebert, K.R., Albu, S.P., Paramasivam, I., and Schmuki, P.: Morphological instability leading to formation of porous anodic oxide films. Nat. Mater. 11, 162 (2012).Google Scholar
5.Sulka, G.D.: Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing in Nanostructured Materials in Electrochemistry, edited by Eftekhari, A. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2008) p. 1.Google Scholar
6.Masuda, H. and Fukuda, K.: Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995).CrossRefGoogle Scholar
7.Lu, J.G., Chang, P., and Fan, Z.: Quasi-one-dimensional metal oxide materials: synthesis, properties and applications. Mater. Sci. Eng. R 52, 49 (2006).Google Scholar
8.Piao, Y., Lim, H., Chang, J., Lee, W., and Kim, H.: Nanostructured materials prepared by use of ordered porous alumina membranes. Electrochim. Acta 50, 2997 (2005).CrossRefGoogle Scholar
9.Wu, C.-G., Lin, H.L., and Shau, N.-L.: Magnetic nanowires via template electrodeposition. J. Solid State Electrochem. 10, 198 (2005).Google Scholar
10.Lukatskaya, M.R., Trusov, L.A., Eliseev, A.A., Lukashin, A.V., Jansen, M., Kazin, P.E., and Napolskii, K.S.: Controlled way to prepare quasi-1D nanostructures with complex chemical composition in porous anodic alumina. Chem. Commun. 47, 2396 (2011).CrossRefGoogle ScholarPubMed
11.Matsui, K., Kyotani, T., and Tomita, A.: Hydrothermal synthesis of single-crystal Ni(OH)2 nanorods in a carbon-coated anodic alumina film. Adv. Mater. 14, 1216 (2002).Google Scholar
12.Lee, W., Scholz, R., Nielsch, K., and Gösele, U.: A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. Angew. Chem. Int. Ed. 44, 6050 (2005).Google Scholar
13.Mattia, D., Rossi, M.P., Kim, B.M., Korneva, G., Bau, H.H., and Gogotsi, Y.: Effect of graphitization on the wettability and electrical conductivity of CVD-carbon nanotubes and films. J. Phys. Chem. B 110, 9850 (2006).CrossRefGoogle ScholarPubMed
14.Kyotani, T., Tsai, L.-F., and Tomita, A.: Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film. Chem. Mater. 8, 2109 (1996).CrossRefGoogle Scholar
15.Shingubara, S.: Fabrication of nanomaterials using porous alumina templates. J. Nanopart. Res. 5, 17 (2003).CrossRefGoogle Scholar
16.Farrell, R.A., Petkov, N., Morris, M.A., and Holmes, J.D.: Self-assembled templates for the generation of arrays of 1-dimensional nanostructures: from molecules to devices. J. Colloid Interface Sci. 349, 449 (2010).Google Scholar
17.Ruda, H.E., Polanyi, J.C., Yang, J.S.Y., Wu, Z., Philipose, U., Xu, T., Yang, S., Kavanagh, K.L., Liu, J.Q., Yang, L., Wang, Y., Robbie, K., Yang, J., Kaminska, K., Cooke, D.G., Hegmann, F.A., Budz, A.J., and Haugen, H.K.: Developing 1D nanostructure arrays for future nanophotonics. Nanoscale Res. Lett. 1, 99 (2006).Google Scholar
18.Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F., and Yan, Y.Q., One-Dimensional Nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).CrossRefGoogle Scholar
19.Ding, G., Yang, R., Ding, J., Yuan, N., and Zhu, Y.: Fabrication of porous anodic alumina with ultrasmall nanopores. Nanoscale Res. Lett. 5, 1257 (2010).Google Scholar
20.Lee, W., Ji, R., Gosele, U., and Nielsch, K.: Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 5, 741 (2006).Google Scholar
21.Li, Y., Ling, Z., Chen, S., Hu, X., and He, X.: Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization. Chem. Commun. 46, 309 (2010).Google Scholar
22.Meng, G., Jung, Y.J., Cao, A., Vajtai, R., and Ajayan, P.M.: Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires. Proc. Natl. Acad. Sci. U.S.A. 102, 7074 (2005).CrossRefGoogle ScholarPubMed
23.Lee, W., Kim, J.-C., and Gosele, U.: Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions. Adv. Funct. Mater. 20, 21 (2010).Google Scholar
24.Nagaura, T., Takeuchi, F., and Inoue, S.: Fabrication and structural control of anodic alumina films with inverted cone porous structure using multi-step anodizing. Electrochim. Acta 53, 2109 (2008).CrossRefGoogle Scholar
25.Osawa, N. and Fukuoka, K.: Pit nucleation behavior of aluminium foil for electrolytic capacitors during early stage of DC etching. Corros. Sci. 42, 585 (2000).Google Scholar