Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-20T10:32:45.743Z Has data issue: false hasContentIssue false

Thermal conductivity of synthetic boron-doped single-crystal HPHT diamond from 20 to 400 K

Published online by Cambridge University Press:  28 March 2016

D. Prikhodko
Affiliation:
Technological Institute for Superhard and Novel Carbon Materials, 142190, 7a Tsentralnaya Street, Troitsk, Moscow, Russia Moscow Institute of Physics and Technology, 141700, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russia
S. Tarelkin
Affiliation:
Technological Institute for Superhard and Novel Carbon Materials, 142190, 7a Tsentralnaya Street, Troitsk, Moscow, Russia Moscow Institute of Physics and Technology, 141700, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russia National University of Science and Technology MISiS, 119049, 2 Leninskiy Prospect, Moscow, Russia
V. Bormashov*
Affiliation:
Technological Institute for Superhard and Novel Carbon Materials, 142190, 7a Tsentralnaya Street, Troitsk, Moscow, Russia Moscow Institute of Physics and Technology, 141700, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russia
A. Golovanov
Affiliation:
Technological Institute for Superhard and Novel Carbon Materials, 142190, 7a Tsentralnaya Street, Troitsk, Moscow, Russia Moscow Institute of Physics and Technology, 141700, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russia
M. Kuznetsov
Affiliation:
Technological Institute for Superhard and Novel Carbon Materials, 142190, 7a Tsentralnaya Street, Troitsk, Moscow, Russia
D. Teteruk
Affiliation:
Technological Institute for Superhard and Novel Carbon Materials, 142190, 7a Tsentralnaya Street, Troitsk, Moscow, Russia
A. Volkov
Affiliation:
Technological Institute for Superhard and Novel Carbon Materials, 142190, 7a Tsentralnaya Street, Troitsk, Moscow, Russia Moscow Institute of Physics and Technology, 141700, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russia
S. Buga
Affiliation:
Technological Institute for Superhard and Novel Carbon Materials, 142190, 7a Tsentralnaya Street, Troitsk, Moscow, Russia Moscow Institute of Physics and Technology, 141700, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russia
*
Address all correspondence to V. Bormashov at [email protected]
Get access

Abstract

Thermal conductivity of single-crystal boron-doped diamond (BDD) was studied in comparison with high-quality pure IIa-type diamond in the temperature range from 20 to 400 K. Boron content in BDD was about 1019 cm−3 that is a typical value of p+ substrates used for power device applications. The thermal conductivity of BDD is about 10 times less than that of IIa diamond near 100 K, but above room temperature the difference is <30%. The observed deviation mostly takes place due to acoustic phonon scattering on extended structural defects occurring in synthetic diamond at high boron content.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sussmann, R.S.: CVD Diamond for Electronic Devices and Sensors (J. Wiley, Chichester, UK, 2009).Google Scholar
2. Yang, N. (ed.): Novel Aspects of Diamond (Springer International Publishing, Cham, 2015).Google Scholar
3. Polyakov, S.N., Denisov, V.N., Kuzmin, N.V., Kuznetsov, M.S., Martyushov, S.Y., Nosukhin, S.A., Terentiev, S.A., and Blank, V.D.: Characterization of top-quality type IIa synthetic diamonds for new X-ray optics. Diam. Relat. Mater. 20, 726728 (2011).Google Scholar
4. Shvyd'ko, Y., Stoupin, S., Blank, V., and Terentyev, S.: Near-100% Bragg reflectivity of X-rays. Nat. Photonics 5, 539542 (2011).Google Scholar
5. Bormashov, V.S., Buga, S.G., Blank, V.D., Kuznetsov, M.S., Nosukhin, S.A., Terent'ev, S.A., and Pel’, E.G.: Fast-response thermistors made of synthetic single-crystal diamonds. Instrum. Exp. Tech. 52, 738742 (2009).Google Scholar
6. Blank, V.D., Bormashov, V.S., Tarelkin, S.A., Buga, S.G., Kuznetsov, M.S., Teteruk, D.V., Kornilov, N.V., Terentiev, S.A., and Volkov, A.P.: Power high-voltage and fast response Schottky barrier diamond diodes. Diam. Relat. Mater. 57, 3236 (2015).Google Scholar
7. Tarelkin, S., Bormashov, V., Buga, S., Volkov, A., Teteruk, D., Kornilov, N., Kuznetsov, M., Terentiev, S., Golovanov, A., and Blank, V.: Power diamond vertical Schottky barrier diode with 10 A forward current. Phys. Status Solidi A 212, 2621 (2015).Google Scholar
8. Eucken, A.: The heat conductivity of certain crystals at low temperatures. Phys. Zs. 12, 1005 (1911).Google Scholar
9. de Haas, W.J. and Biermasz, T.: The dependence on thickness of the thermal resistance of crystals at low temperatures. Physica 5, 619624 (1938).Google Scholar
10. Berman, R., Simon, F.E., and Ziman, J.M.: The thermal conductivity of diamond at low temperatures. Proc. R. Soc. Math. Phys. Eng. Sci. 220, 171183 (1953).Google Scholar
11. Berman, R., Hudson, P.R.W., and Martinez, M.: Nitrogen in diamond: evidence from thermal conductivity. J. Phys. C Solid State Phys. 8, L430L434 (1975).Google Scholar
12. Anthony, T.R., Banholzer, W.F., Fleischer, J.F., Wei, L., Kuo, P.K., Thomas, R.L., and Pryor, R.W.: Thermal diffusivity of isotopically enriched C 12 diamond. Phys. Rev. B 42, 11041111 (1990).Google Scholar
13. Olson, J., Pohl, R., Vandersande, J., Zoltan, A., Anthony, T., and Banholzer, W.: Thermal conductivity of diamond between 170 and 1200 K and the isotope effect. Phys. Rev. B 47, 1485014856 (1993).Google Scholar
14. Onn, D.G., Witek, A., Qiu, Y.Z., Anthony, T.R., and Banholzer, W.F.: Some aspects of the thermal conductivity of isotopically enriched diamond single crystals. Phys. Rev. Lett. 68, 28062809 (1992).Google Scholar
15. Wei, L., Kuo, P., Thomas, R., Anthony, T., and Banholzer, W.: Thermal conductivity of isotopically modified single crystal diamond. Phys. Rev. Lett. 70, 37643767 (1993).Google Scholar
16. Bormashov, V.S., Tarelkin, S.A., Buga, S.G., Kuznetsov, M.S., Terentiev, S.A., Semenov, A.N., and Blank, V.D.: Electrical properties of the high quality boron-doped synthetic single-crystal diamonds grown by the temperature gradient method. Diam. Relat. Mater. 35, 1923 (2013).Google Scholar
17. Blank, V.D., Kuznetsov, M.S., Nosukhin, S.A., Terentiev, S.A., and Denisov, V.N.: The influence of crystallization temperature and boron concentration in growth environment on its distribution in growth sectors of type IIb diamond. Diam. Relat. Mater. 16, 800804 (2007).Google Scholar
18. Callaway, J.: Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 10461051 (1959).Google Scholar
19. Kittel, C.: Introduction to Solid State Physics, 8th ed. (Wiley, Hoboken, NJ, 2005).Google Scholar
20. Tritt, T.M. (ed.): Thermal Conductivity: Theory, Properties, and Applications (Kluwer Academic/Plenum Publishers, New York, 2004).Google Scholar