Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-06T02:03:55.501Z Has data issue: false hasContentIssue false

Tellurium-doped lanthanum manganite as catalysts for the oxygen reduction reaction

Published online by Cambridge University Press:  09 April 2017

V. Celorrio
Affiliation:
School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, UK
L.J. Morris
Affiliation:
School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, UK EPSRC Centre for Doctoral Training in Catalysis, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
M. Cattelan
Affiliation:
School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, UK
N.A. Fox
Affiliation:
School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, UK
D.J. Fermin*
Affiliation:
School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, UK
*
Address all correspondence to: D.J. Fermin at [email protected]
Get access

Abstract

The effect of tellurium (Te) doping on the electrocatalytic activity of La1−x Te x MnO3 toward the oxygen reduction reaction is investigated for the first time. La1−x Te x MnO3 with x-values up 23% were synthesized from a single ionic liquid-based precursor, yielding nanoparticles with mean diameter in the range of 40–68 nm and rhombohedral unit cell. Electrochemical studies were performed on carbon-supported particles in alkaline environment. The composition dependence activity is discussed in terms of surface density of Mn sites and changes in the effective Mn oxidation state.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cheng, F. and Chen, J.: Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41, 2172 (2012).CrossRefGoogle ScholarPubMed
2. Lee, D.U., Xu, P., Cano, Z.P., Kashkooli, A.G., Park, M.G., and Chen, Z.: Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries. J. Mater. Chem. A 4, 7107 (2016).Google Scholar
3. Li, L., Feng, X., Chen, S., Shi, F., Xiong, K., Ding, W., Qi, X., Hu, J., Wei, Z., Wan, L-J., and Xia, M.: Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2 . ACS Catal. 5, 4825 (2015).Google Scholar
4. Hardin, W.G., Mefford, J.T., Slanac, D.A., Patel, B.B., Wang, X., Dai, S., Zhao, X., Ruoff, R.S., Johnston, K.P., and Stevenson, K.J.: Tuning the electrocatalytic activity of perovskites through active site variation and support interactions. Chem. Mater. 26, 3368 (2014).Google Scholar
5. Suntivich, J., Gasteiger, H.A., Yabuuchi, N., Nakanishi, H., Goodenough, J.B., and Shao-Horn, Y.: Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3, 546 (2011).CrossRefGoogle ScholarPubMed
6. Stoerzinger, K.A., Risch, M., Han, B., and Shao-Horn, Y.: Recent insights into manganese oxides in catalyzing oxygen reduction kinetics. ACS Catal. 5, 6021 (2015).CrossRefGoogle Scholar
7. Celorrio, V., Calvillo, L., Dann, E., Granozzi, G., Aguadero, A., Kramer, D., Russell, A.E., and Fermin, D.J.: Oxygen reduction reaction at La x Ca1−x MnO3 nanostructures: interplay between A-site segregation and B-site valency. Catal. Sci. Tech. 6, 7231 (2016).Google Scholar
8. Ge, X., Sumboja, A., Wuu, D., An, T., Li, B., Goh, F.W.T., Hor, T.S.A., Zong, Y., and Liu, Z.: Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal. 5, 4643 (2015).CrossRefGoogle Scholar
9. Calle-Vallejo, F., Inoglu, N.G., Su, H-Y., Martinez, J.I., Man, I.C., Koper, M.T.M., Kitchin, J.R., and Rossmeisl, J.: Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides. Chem. Sci. 4, 1245 (2013).Google Scholar
10. Lee, W., Han, J.W., Chen, Y., Cai, Z., and Yildiz, B.: Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc. 135, 7909 (2013).Google Scholar
11. Celorrio, V., Dann, E., Calvillo, L., Morgan, D.J., Hall, S.R., and Fermin, D.J.: Oxygen reduction at carbon-supported lanthanides: the role of the B-site. ChemElectroChem 3, 283 (2016).CrossRefGoogle Scholar
12. Ryabova, A.S., Napolskiy, F.S., Poux, T., Istomin, S.Y., Bonnefont, A., Antipin, D.M., Baranchikov, A.Y., Levin, E.E., Abakumov, A.M., Kéranguéven, G., Antipov, E.V., Tsirlina, G.A., and Savinova, E.R.: Rationalizing the influence of the Mn(IV)/Mn(III) red-ox transition on the electrocatalytic activity of manganese oxides in the oxygen reduction reaction. Electrochim. Acta 187, 161 (2016).Google Scholar
13. Hong, W.T., Risch, M., Stoerzinger, K.A., Grimaud, A., Suntivich, J., and Shao-Horn, Y.: Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404 (2015).Google Scholar
14. Yang, J., Song, W.H., Ma, Y.Q., Zhang, R.L., and Sun, Y.P.: Determination of oxygen stoichiometry in the mixed-valent manganites. J. Magn. Magn. Mater. 285, 417 (2005).Google Scholar
15. Green, D.C., Glatzel, S., Collins, A.M., Patil, A.J., and Hall, S.R.: A new general synthetic strategy for phase-pure complex functional materials. Adv. Mater. 24, 5767 (2012).Google Scholar
16. Rodríguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B: Condens Matter 192, 55 (1993).Google Scholar
17. Rietveld, H.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969).CrossRefGoogle Scholar
18. Yang, J., Song, W.H., Ma, Y.Q., Zhang, R.L., Zhao, B.C., Sheng, Z.G., Zheng, G.H., Dai, J.M., and Sun, Y.P.: Insulator–metal transition and the magnetic phase diagram of La1−x Te x MnO3 (0.1 ≤ x ≤ 0.6). Mater. Chem. Phys. 94, 62 (2005).Google Scholar
19. Zheng, G.H., Sun, Y.P., Zhu, X.B., and Song, W.H.: Transport, magnetic, internal friction, and Young's modulus in the Y-doped manganites La0.9−x Y x Te0.1MnO3 . J. Solid State Chem. 179, 1394 (2006).Google Scholar
20. Sunding, M.F., Hadidi, K., Diplas, S., Løvvik, O.M., Norby, T.E., and Gunnæs, A.E.: XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures. J. Electron. Spectrosc. Relat. Phenom. 184, 399 (2011).Google Scholar
21. Álvarez-Galván, M.C., de la Peña O'Shea, V.A., Arzamendi, G., Pawelec, B., Gandía, L.M., and Fierro, J.L.G.: Methyl ethyl ketone combustion over La-transition metal (Cr, Co, Ni, Mn) perovskites. Appl. Catal. B 92, 445 (2009).Google Scholar
22. Bolwin, K., Schnurnberger, W., and Schiller, G.: Influence of valence band states on the core hole screening in lanthanide perovskite compounds. Z. Phys. B 72, 203 (1988).Google Scholar
23. Christie, A.B., Sutherland, I., and Walls, J.M.: Studies of the composition, ion-induced reduction and preferential sputtering of anodic oxide films on Hg0.8Cd0.2Te by XPS. Surf. Sci. 135, 225 (1983).Google Scholar
24. Farrow, R.F.C., Dennis, P.N.J., Bishop, H.E., Smart, N.R., and Wotherspoon, J.T.M.: The composition of anodic oxide films on Hg0.8Cd0.2Te. Thin Solid Films 88, 87 (1982).Google Scholar
25. Di Castro, V. and Polzonetti, G.: XPS study of MnO oxidation. J. Electron. Spectrosc. Relat. Phenom. 48, 117 (1989).Google Scholar
26. Druce, J., Tellez, H., Burriel, M., Sharp, M.D., Fawcett, L.J., Cook, S.N., McPhail, D.S., Ishihara, T., Brongersma, H.H., and Kilner, J.A.: Surface termination and subsurface restructuring of perovskite-based solid oxide electrode materials. Energy Environ. Sci. 7, 3593 (2014).Google Scholar
27. Bard, A.J.: Chapter 9: Methods involving forced convection-hydrodynamic methods. In Electrochemical Methods: Fundamentals and Applications, edited by Bard, A.J. and Faulkner, L.R. (Wiley, New York, 1980), pp. 331367.Google Scholar
Supplementary material: File

Celorrio supplementary material

Celorrio supplementary material 1

Download Celorrio supplementary material(File)
File 3.9 MB