Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T07:30:01.788Z Has data issue: false hasContentIssue false

Synthesis of nanosized zirconium dioxide and its solid solutions with titanium dioxide from the CO2 supercritical fluid

Published online by Cambridge University Press:  18 January 2018

I.E. Sokolov*
Affiliation:
Moscow Technological University, Institute of Fine Chemical Technology (MIREA), Moscow 119571, Russia
I.A. Konovalov
Affiliation:
Moscow Technological University, Institute of Fine Chemical Technology (MIREA), Moscow 119571, Russia
R.M. Zakalyukin
Affiliation:
Moscow Technological University, Institute of Fine Chemical Technology (MIREA), Moscow 119571, Russia
D.V. Golubev
Affiliation:
Moscow Technological University, Institute of Fine Chemical Technology (MIREA), Moscow 119571, Russia
A.S. Kumskov
Affiliation:
Institute of Crystallography named after A.V. Shubnikov, FRC Crystallography and Photonics of RAS, Moscow119333, Russia National Research Center Kurchatov Institute, Moscow 123182, Russia
V.V. Fomichev
Affiliation:
Moscow Technological University, Institute of Fine Chemical Technology (MIREA), Moscow 119571, Russia
*
Address all correspondence to I.E. Sokolov at [email protected]
Get access

Abstract

In this study, the formation solid solutions of titanium dioxide- zirconium dioxide (TiO2-ZrO2) system with the supercritical fluid method is described. The particles of solid solutions in the TiO2-ZrO2 system are spherical and form agglomerates, they are amorphous and have a size from 90 to 850 nm. The X-ray patterns of samples calcined above the temperatures of crystallization (450 °C) and phase transition (750 °C) demonstrate the decomposition of the solid solutions above the crystallization temperature and formation of phases in accordance with phase ratios in the TiO2-ZrO2 system at these temperatures. The formation solid solutions of the starting materials are observed in all region of concentrations.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cui, H., Li, Q., Gao, S., and Shang, J.K.: Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. J. Ind. Eng. Chem. 18, 14181427 (2012).CrossRefGoogle Scholar
2. Chakravarty, R., Shukla, R., Ram, R., Tyagi, A.K., Dash, A., and Venkatesh, M.: Development of a nano-zirconia based 68Ge/68Ga generator for biomedical applications. Nucl. Med. Biol. 38, 575583 (2011).CrossRefGoogle ScholarPubMed
3. Hajiyeva, F.V.: Luminescent properties of nanocomposites on the basis of isotactic polypropylene and zirconium dioxide nanoparticles. J. Nanomed. Nanotechnol. 7, (2015).Google Scholar
4. Peng, T., Zhao, D., Dai, K., Shi, W., and Hirao, K.: Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity. J. Phys. Chem. B. 109, 49474952 (2005).CrossRefGoogle Scholar
5. Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 28912959 (2007).Google Scholar
6. Wu, M., Lin, G., Chen, D., Wang, G., He, D., Feng, S., and Xu, R.: Sol-hydrothermal synthesis and hydrothermally structural evolution of nanocrystal titanium dioxide. Chem. Mater. 14, 19741980 (2002).Google Scholar
7. Su, Y., Cui, H., Li, Q., Gao, S., and Shang, J.K.: Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles. Water Res. 47, 50185026 (2013).Google Scholar
8. Roberts, S.J., Dodson, J.J., Carpinone, P.L., and Hagelin-Weaver, H.E.: Evaluation of nanoparticle zirconia supports in the thermochemical water splitting cycle over iron oxides. Int. J. Hydrog. Energy. 40, 1597215984 (2015).CrossRefGoogle Scholar
9. Daghrir, R., Drogui, P., and Robert, D.: Modified TiO2 for environmental photocatalytic applications: a review. Ind. Eng. Chem. Res. 52, 35813599 (2012).CrossRefGoogle Scholar
10. Al-Ahmed, A., Mukhtar, B., Hossain, S., Javaid Zaidi, S.M., and Rahman, S.U.: Application of titanium dioxide (TiO2) based photocatalytic nanomaterials in solar and hydrogen energy: a short review in materials science forum. Trans Tech Publications. 712, 2547 (2012).Google Scholar
11. Kim, Y.S., Song, M.Y., Park, E.S., Chin, S., Bae, G.N., and Jurng, J.: Visible-light-induced bactericidal activity of vanadium-pentoxide (V2O5)-loaded TiO2 nanoparticles. Appl. Biochem. Biotechnol. 168, 11431152 (2012).Google Scholar
12. Khan, S.T., Al-Khedhairy, A.A., and Musarrat, J.: ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: a review. J. Nanopart. Res. 17, 276 (2015).Google Scholar
13. Fu, X., Clark, L.A., Yang, Q., and Anderson, M.A.: Enhanced photocatalytic performance of titania-based binary metal oxides. Environ. Sci. Technol. 30, 647653 (1996).CrossRefGoogle Scholar
14. Kitiyanan, A., Ngamsinlapasathian, S., Pavasupree, S., and Yoshikawa, S.: The preparation and characterization of nanostructured TiO2–ZrO2 mixed oxide electrode for efficient dye-sensitized solar cells. J. Solid State Chem. 178, 10441048 (2005).CrossRefGoogle Scholar
15. Chang, Q., Zhou, J.E., Wang, Y., and Meng, G.: Formation mechanism of zirconia nano-particles containing pores prepared via sol–gel-hydrothermal method. Adv. Powder Technol. 21, 425430 (2010).CrossRefGoogle Scholar
16. Geethalakshmi, K., Prabhakaran, T., and Hemalatha, J.: Dielectric studies on nano-zirconium dioxide synthesized through co-precipitation process. World Acad. Sci. Eng. Technol. 64, 179182 (2012).Google Scholar
17. Buslaeva, T., Kopylova, E., Popenko, V., Potapova, A., and Fomichev, V.: Cerium (III) Carbonate hydroxide nanoparticles encrusted by metallic palladium. Synthesis and investigation. Fine Chem. Technol. 11, 2328 (2016).Google Scholar
18. Baiker, A.: Supercritical fluids in heterogeneous catalysis. Chem. Rev. 99, 453474 (1999).Google Scholar
19. Machida, H., Takesue, M., and Smith, R.L.: Green chemical processes with supercritical fluids: properties, materials, separations and energy. J. Supercritical Fluids. 60, 215 (2011).Google Scholar
20. Reverchon, E. and Adami, R.: Nanomaterials and supercritical fluids. J. Supercritical Fluids. 37, 122 (2006).Google Scholar
21. Lu, T., Blackburn, S., Dickinson, C., Rosseinsky, M.J., Hutchings, G., Axon, S., and Leeke, G.A.: Production of titania nanoparticles by a green process route. Powder Technol. 188, 264271 (2009).CrossRefGoogle Scholar
22. Marin, R.P., Ishikawa, S., Bahruji, H., Shaw, G., Kondrat, S.A., Miedziak, P.J., and Bowker, M.: Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and photocatalysis. Appl. Catalysis A: General. 504, 6273 (2015).Google Scholar
23. Mi, J.L., Johnsen, S., Clausen, C., Hald, P., Lock, N., , L., and Iversen, B.B.: Highly controlled crystallite size and crystallinity of pure and iron-doped anatase-TiO2 nanocrystals by continuous flow supercritical synthesis. J. Mater. Res. 28, 333339 (2013).Google Scholar
24. Tuncer, M. and Ozdemir, B.: Photocatalytic activity of TiO2 powders synthesized by supercritical gas antisolvent method. Growth 14, 15 (2013).Google Scholar
25. Konovalov, I.A., Mavrin, B.N., Prokudina, N.A., and Fomichev, V.V.: Synthesis of nanoscale titanium dioxide by precipitation using supercritical anti-solvent. Russ. Chem. Bull. 65, 27952800 (2016).Google Scholar
26. Troitzsch, U. and Ellis, D.J.: The ZrO2-TiO2 phase diagram. J. Mater. Sci. 40, 45714577 (2005).Google Scholar
27. Zhurov, V.V. and Ivanov, S.A.: PROFIT computer program for processing powder diffraction data on an IBM PC with a graphic user interface. Crystallogr. Rep. 42, 202206 (1997).Google Scholar
28. Sham, E.L., Aranda, M.A., Farfan-Torres, E.M., Gottifredi, J.C., Martınez-Lara, M., and Bruque, S.: Zirconium titanate from sol–gel synthesis: thermal decomposition and quantitative phase analysis. J. Solid State Chem. 139, 225232 (1998).Google Scholar
29. Bordet, P., McHale, A., Santoro, A., and Roth, R.S.: Powder neutron diffraction study of ZrTiO4, Zr5Ti7O24, and FeNb2O6 . J. Solid State Chem. 64, 3046 (1986).Google Scholar
30. McHale, A. and Roth, R.S.: Low-temperature phase relationships in the system ZrO2-TiO2 . J. Am. Ceram. Soc. 69, 827832 (1986).Google Scholar