Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T07:46:03.513Z Has data issue: false hasContentIssue false

Suppressing crystallization in solution-processed thin films of organic semiconductors

Published online by Cambridge University Press:  12 August 2015

Jes B. Sherman
Affiliation:
Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
Chien-Yang Chiu
Affiliation:
Materials Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA
Ryan Fagenson
Affiliation:
Materials Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA
Guang Wu
Affiliation:
Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
Craig J. Hawker
Affiliation:
Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA Materials Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA
Michael L. Chabinyc*
Affiliation:
Materials Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA
*
Address all correspondence to Michael L. Chabinyc at[email protected]
Get access

Abstract

Glassy organic semiconductors provide a convenient host for dispersing guest molecules, such as dopants or light-emitting chromophores. However, many glass-forming compounds will crystallize over time leading to changes in performance and stability in devices. Methods to stabilize amorphous molecular solids are therefore desirable. We demonstrate that solution-processable glasses can be formed from a mixture of 8,8′-biindeno[2,1-b]thiophenylene (BTP) atropisomers. While the trans isomer of methylated BTP, (E)-MeBTP crystallizes in spin-cast films, the addition of (Z)-MeBTP slows the growth of the spherulites. X-ray scattering and optical microscopy indicate that films containing 40% (Z)-MeBTP do not crystallize, even with the addition of nucleation agents and aging for several months.

Type
Polymers/Soft Matter Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Trasi, N.S. and Taylor, L.S.: Effect of polymers on nucleation and crystal growth of amorphous acetaminophen. CrystEngComm. 14, 51885197 (2012).Google Scholar
2.Ediger, M.D.: Vapor-deposited glasses provide clearer view of two-level systems. Proc. Natl. Acad. Sci. 111, 1123211233 (2014).CrossRefGoogle ScholarPubMed
3.Aziz, H., Popovic, Z., Xie, S., Hor, A.-M., Hu, N.-X., Tripp, C., and Xu, G.: Humidity-induced crystallization of tris (8-hydroxyquinoline) aluminum layers in organic light-emitting devices. Appl. Phys. Lett. 72, 756758 (1998).CrossRefGoogle Scholar
4.Krebs, F.C.: Stability and Degradation of Organic and Polymer Solar Cells (John Wiley & Sons, Hoboken, NJ, 2012).Google Scholar
5.Shirota, Y.: Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications. J. Mater. Chem. 15, 7593 (2005).CrossRefGoogle Scholar
6.Naito, K. and Miura, A.: Molecular design for nonpolymeric organic dye glasses with thermal stability: relations between thermodynamic parameters and amorphous properties. J. Phys. Chem. 97, 62406248 (1993).CrossRefGoogle Scholar
7.Fabregat-Santiago, F., Bisquert, J., Cevey, L., Chen, P., Wang, M., Zakeeruddin, S.M., and Grätzel:, M.Electron transport and recombination in solid-state dye solar cell with spiro-OMeTAD as hole conductor. J. Am. Chem. Soc. 131, 558562 (2009).Google Scholar
8.Jeon, N.J., Lee, H.G., Kim, Y.C., Seo, J., Noh, J.H., Lee, J., and Seok, S.I.: o-Methoxy substituents in spiro-OMeTAD for efficient inorganic–organic hybrid Perovskite solar cells. J. Am. Chem. Soc. 136, 78377840 (2014).Google Scholar
9.Leijtens, T., Ding, I.-K., Giovenzana, T., Bloking, J.T., McGehee, M.D., and Sellinger, A.: Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells. ACS Nano 6, 14551462 (2012).Google Scholar
10.Redinger, D., Clough, R.S., Novack, J.C., Caldwell, G., Payne, M.M., and Anthony, J.E.: Novel silylethynyl substituted pentacenes with high-temperature thermal transitions. MRS Online Proc. Libr. 1270, II09–16 (2010).Google Scholar
11.Rimer, J.D., An, Z., Zhu, Z., Lee, M.H., Goldfarb, D.S., Wesson, J.A., and Ward, M.D.: Crystal growth inhibitors for the prevention of l-cystine kidney stones through molecular design. Science 330, 337341 (2010).Google Scholar
12.Kuvadia, Z.B. and Doherty, M.F.: Effect of structurally similar additives on crystal habit of organic molecular crystals at low supersaturation. Cryst. Growth Des. 13, 14121428 (2013).Google Scholar
13.Sizemore, J.P. and Doherty, M.F.: A new model for the effect of molecular imposters on the shape of faceted molecular crystals. Cryst. Growth Des. 9, 26372645 (2009).Google Scholar
14.Stingelin-Stutzmann, N., Smits, E., Wondergem, H., Tanase, C., Blom, P., Smith, P., and de Leeuw, D.: Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics. Nat. Mater. 4, 601606 (2005).Google Scholar
15.Lindqvist, C., Bergqvist, J., Bäcke, O., Gustafsson, S., Wang, E., Olsson, E., Inganäs, O., Andersson, M.R., and Müller, C.: Fullerene mixtures enhance the thermal stability of a non-crystalline polymer solar cell blend. Appl. Phys. Lett. 104, 153301 (2014).Google Scholar
16.Santo, Y., Jeon, I., Yeo, K.S., Nakagawa, T., and Matsuo, Y.: Mixture of [60] and [70] PCBM giving morphological stability in organic solar cells. Appl. Phys. Lett. 103, 073306 (2013).Google Scholar
17.Hu, N.-X., Xie, S., Popovic, Z., Ong, B., Hor, A.-M., and Wang, S.: 5,11-dihydro-5,11-di-1-naphthylindolo[3,2- b] carbazole: atropisomerism in a novel hole-transport molecule for organic light-emitting diodes. J. Am. Chem. Soc. 121, 50975098 (1999).Google Scholar
18.Swallen, S.F., Kearns, K.L., Mapes, M.K., Kim, Y.S., McMahon, R.J., Ediger, M.D., Wu, T., Yu, L., and Satija, S.: Organic glasses with exceptional thermodynamic and kinetic stability. Science 315, 353356 (2007).Google Scholar
19.Brunetti, F.G., Gong, X., Tong, M., Heeger, A.J., and Wudl, F.: Strain and hückel aromaticity: driving forces for a promising new generation of electron acceptors in organic electronics. Angew. Chem. Int. Ed. 49, 532536 (2010).Google Scholar
20.Chiu, C.-Y., Wang, H., Brunetti, F.G., Wudl, F., and Hawker, C.J.: Twisted but conjugated: building blocks for low bandgap polymers. Angew. Chem. Int. Ed. 53, 39964000 (2014).Google Scholar
21.Gong, X., Tong, M., Brunetti, F.G., Seo, J., Sun, Y., Moses, D., Wudl, F., and Heeger, A.J.: Bulk heterojunction solar cells with large open-circuit voltage: electron transfer with small donor-acceptor energy offset. Adv. Mater. 23, 22722277 (2011).CrossRefGoogle ScholarPubMed
22.Baird, J.A., Van Eerdenbrugh, B., and Taylor, L.S.: A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J. Pharm. Sci. 99, 37873806 (2010).Google Scholar
23.Ping, W., Paraska, D., Baker, R., Harrowell, P., and Angell, C.A.: Molecular engineering of the glass transition: glass-forming ability across a homologous series of cyclic stilbenes. J. Phys. Chem. B 115, 46964702 (2011).Google Scholar
24.Sun, Y., Xi, H., Chen, S., Ediger, M.D., and Yu, L.: Crystallization near glass transition: transition from diffusion-controlled to diffusionless crystal growth studied with seven polymorphs. J. Phys. Chem. B 112, 55945601 (2008).Google Scholar
25.Sun, Y., Zhu, L., Kearns, K.L., Ediger, M.D., and Yu, L.: Glasses crystallize rapidly at free surfaces by growing crystals upward. Proc. Natl. Acad. Sci. 108, 59905995 (2011).Google Scholar
26.Treat, N.D., Nekuda Malik, J.A., Reid, O., Yu, L., Shuttle, C.G., Rumbles, G., Hawker, C.J., Chabinyc, M.L., Smith, P., and Stingelin, N.: Microstructure formation in molecular and polymer semiconductors assisted by nucleation agents. Nat. Mater. 12, 628633 (2013).Google Scholar
27.Michaels, A.S. and Tausch, F.W.: Modification of growth rate and habit of adipic acid crystals with surfactants. J. Phys. Chem. 65, 17301737 (1961).Google Scholar
28.Davey, R.J., Black, S.N., Logan, D., Maginn, S.J., Fairbrother, J.E., and Grant, D.J.W.: Structural and kinetic features of crystal growth inhibition: adipic acid growing in the presence of n-alkanoic acids. J. Chem. Soc. Faraday Trans. 88, 34613466 (1992).Google Scholar
29.Solomonov, I., Osipova, M., Feldman, Y., Baehtz, C., Kjaer, K., Robinson, I.K., Webster, G.T., McNaughton, D., Wood, B.R., Weissbuch, I., and Leiserowitz, L.: Crystal nucleation, growth, and morphology of the synthetic malaria pigment β-hematin and the effect thereon by quinoline additives: the malaria pigment as a target of various antimalarial drugs. J. Am. Chem. Soc. 129, 26152627 (2007).Google Scholar
30.Shtukenberg, A.G., Punin, Y.O., Gunn, E., and Kahr, B.: Spherulites. Chem. Rev. 112, 18051838 (2012).Google Scholar
31.Park, S.-W., Choi, J.-M., Lee, K.H., Yeom, H.W., Im, S., and Lee, Y.K.: Amorphous-to-crystalline phase transformation of thin film rubrene. J. Phys. Chem. B 114, 56615665 (2010).CrossRefGoogle ScholarPubMed
32.Scott, G.D. and Kilgour, D.M.: The density of random close packing of spheres. J. Phys. Appl. Phys. 2, 863866 (1969).Google Scholar
Supplementary material: PDF

Sherman supplementary material

Sherman supplementary material 1

Download Sherman supplementary material(PDF)
PDF 3 MB