Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-30T10:36:54.351Z Has data issue: false hasContentIssue false

Supercapacitor electrodes with high active mass loading

Published online by Cambridge University Press:  22 August 2018

R. Poon
Affiliation:
Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, L8S4L7, Canada
I. Zhitomirsky*
Affiliation:
Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, L8S4L7, Canada
*
Address all correspondence to I. Zhitomirsky at E-mail: [email protected]
Get access

Abstract

We report the fabrication and testing of MnO2–carbon nanotube (NT) electrodes for supercapacitors (SCap) with high active mass (AM). Cetylpyridinium chloride surfactant was used as a capping agent for synthesis and a phase transfer agent for the liquid–liquid extraction. Water immiscible solvent, n-butanol, was used as a receiving and reducing medium for the synthesis of MnO2 from cetylpyridinium permanganate. Improved co-dispersion and nanoscale mixing of MnO2 and NT enabled the fabrication of advanced electrodes with mass loading of 42–61 mg/cm2, ratio of AM to current collector mass of 0.63–0.91, which showed the highest capacitance of 8.95 F/cm2.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Devaraj, S. and Munichandraiah, N.: High capacitance of electrodeposited MnO2 by the effect of a surface-active agent. Electrochem. Solid-State Lett. 8, A373A377 (2005).Google Scholar
2.Brousse, T., Taberna, P.L., Crosnier, O., Dugas, R., Guillemet, P., Scudeller, Y., Zhou, Y, Favier, F., Belanger, D., and Simon, P.: Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor. J. Power Sources 173, 633641 (2007).Google Scholar
3.Jeong, Y.U. and Manthiram, A.: Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes. J. Electrochem. Soc. 149, A1419A1422 (2002).Google Scholar
4.Chodankar, N.R., Dubal, D.P., Gund, G.S., and Lokhande, C.D.: Bendable all-solid-state asymmetric supercapacitors based on MnO2 and Fe2O3 thin films. Energy Technol. 3, 625631 (2015).Google Scholar
5.Beasley, C.A., Sassin, M.B., and Long, J.W.: Extending electrochemical quartz crystal microbalance techniques to macroscale electrodes: insights on pseudocapacitance mechanisms in MnOx-coated carbon nanofoams. J. Electrochem. Soc. 162, A5060A5064 (2015).Google Scholar
6.Athouël, L., Arcidiacono, P., Ramirez-Castro, C., Crosnier, O., Hamel, C., Dandeville, Y., Gillemet, P., Scudeller, Y., Guay, D., Belanger, D., and Brousse, T.: Investigation of cavity microelectrode technique for electrochemical study with manganese dioxides. Electrochim. Acta 86, 268276 (2012).Google Scholar
7.Coustan, L., Le Comte, A., Brousse, T., and Favier, F.: MnO2 as ink material for the fabrication of supercapacitor electrodes. Electrochim. Acta 152, 520529 (2015).Google Scholar
8.Demarconnay, L., Raymundo-Pinero, E., and Béguin, F.: Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor. J. Power Sources 196, 580586 (2011).Google Scholar
9.Lei, Y., Daffos, B., Taberna, P.L., Simon, P., and Favier, F.. MnO2-coated Ni nanorods: enhanced high rate behavior in pseudo-capacitive supercapacitor. Electrochim. Acta 55, 74547459 (2010).Google Scholar
10.Grote, F., Kühnel, R.S., Balducci, A., and Lei, Y.: Template assisted fabrication of free-standing MnO2 nanotube and nanowire arrays and their application in supercapacitors. Appl. Phys. Lett. 104, 053904 (2014).Google Scholar
11.Goubard-Bretesché, N., Crosnier, O., Buvat, G., Favier, F., and Brousse, T.: Electrochemical study of aqueous asymmetric FeWO4/MnO2 supercapacitor. J. Power Sources 326, 695701 (2016).Google Scholar
12.Xia, H. and Huo, C.: Electrochemical properties of MnO2/CNT nanocomposite in neutral aqueous electrolyte as cathode material for asymmetric supercapacitors. Int. J. Smart Nano Mater. 2, 283291 (2011).Google Scholar
13.Borysiewicz, M., Wzorek, M., Ekielski, M., Kaczmarski, J., and Wojciechowski, T.: Controlling the nanoscale morphology and structure of the ZnO/MnO2 system for efficient transparent supercapacitors. MRS Commun. 7, 173178 (2017).Google Scholar
14.Gund, G.S., Dubal, D.P., Chodankar, N.R., Cho, J.Y., Gomez-Romero, P., Park, C., and Lokhande, C.D.: Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel. Sci. Rep. 5, 12454 (2015).Google Scholar
15.Chen, R., Poon, R., Sahu, R.P., Puri, I.K., and Zhitomirsky, I.: MnO2-carbon nanotube electrodes for supercapacitors with high active mass loadings. J. Electrochem. Soc. 164, A1673A1678 (2017).Google Scholar
16.Dash, S. and Mishra, B.K.: Mn(VII) oxidation using cetyltrimethylammonium permanganate: self-oxidation of CTAP and oxidation of benzyl alcohol. Int. J. Chem. Kinet. 27, 627635 (1995).Google Scholar
17.Uppugalla, S., Boddula, R., and Srinivasan, P.: Methyl triphenylphosphonium permanganate as a novel oxidant for aniline to polyaniline-manganese(II, IV) oxide: material for high performance pseudocapacitor. J. Solid State Electrochem. 22, 407415 (2018).Google Scholar
18.Ching, S., Welch, E.J., Hughes, S.M., Bahadoor, A.B., and Suib, S.L.: Nonaqueous sol-gel syntheses of microporous manganese oxides. Chem. Mater. 14, 12921299 (2002).Google Scholar
19.Dash, S., Patel, S., and Mishra, B.K.: Oxidation by permanganate: synthetic and mechanistic aspects. Tetrahedron 65, 707739 (2009).Google Scholar
20.Karaman, H., Barton, R.J., Robertson, B.E., and Lee, D.G.: Preparation and properties of quaternary ammonium and phosphonium permanganates. J. Org. Chem. 49, 45094516 (1984).Google Scholar
21.Wallar, C., Zhang, T., Shi, K., and Zhitomirsky, I.: Synthesis of metal and metal oxide nanoparticles, liquid–liquid extraction and application in supercapacitors. Colloids Surf., A 500, 195202 (2016).Google Scholar
22.Malik, M.A. and Khan, Z.: Permanganate transfer and reduction by D-glucose in benzene-cetyltrimethylammoniumbromide aqueous solution: a kinetic study. Int. J. Chem. Kinet. 40, 496503 (2008).Google Scholar
23.Wang, Y., Liu, Y., and Zhitomirsky, I.: Surface modification of MnO2 and carbon nanotubes using organic dyes for nanotechnology of electrochemical supercapacitors. J. Mater. Chem. A 1, 1251912526 (2013).Google Scholar
24.Shi, K. and Zhitomirsky, I.: Influence of current collector on capacitive behavior and cycling stability of Tiron doped polypyrrole electrodes. J. Power Sources 240, 4249 (2013).Google Scholar
25.Su, Y. and Zhitomirsky, I.: Asymmetric electrochemical supercapacitor, based on polypyrrole coated carbon nanotube electrodes. Appl. Energy 153, 4855 (2015).Google Scholar
Supplementary material: File

Poon and Zhitomirsky supplementary material

Figures S1-S7 and Table S1

Download Poon and Zhitomirsky supplementary material(File)
File 4.9 MB