Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T17:39:53.075Z Has data issue: false hasContentIssue false

Strong piezoelectricity in individual GaN nanowires

Published online by Cambridge University Press:  27 September 2011

Majid Minary-Jolandan
Affiliation:
Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208-3111
Rodrigo A. Bernal
Affiliation:
Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208-3111
Horacio D. Espinosa*
Affiliation:
Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208-3111
*
Address all correspondence to Horacio D. Espinosa at [email protected]
Get access

Abstract

GaN nanowires are promising building blocks for future nanoelectronics, optoelectronic devices, and nanogenerators. Here, we report on strong piezoelectricity in individual single-crystal GaN nanowires revealed by direct measurement of the piezoelectric constant using piezoresponse force microscopy. Our experimental results show that individual c-axis GaN nanowires, with a characteristic dimension as small as 65 nm, show a shear piezoelectric constant of d15 ~ 10 pm/V, which is several times that measured in bulk. The revealed strong piezoelectricity could open promising opportunities for application of GaN nanowires in nanowire-based sensors and generators for self-powered nanodevices.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yang, P., Yan, R., and Fardy, M.: Semiconductor nanowire: what's next? Nano Lett. 10, 15291536 (2010).CrossRefGoogle ScholarPubMed
2.Wang, Z.L. and Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242246 (2006).CrossRefGoogle ScholarPubMed
3.Yang, R., Qin, Y., Dai, L., and Wang, Z.L.: Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4, 3439 (2009).CrossRefGoogle ScholarPubMed
4.Qi, Y., Kim, J., Nguyen, T.D., Lisko, B., Purohit, P.K., and McAlpine, M.C.: Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11, 13311336 (2011).CrossRefGoogle ScholarPubMed
5.Agrawal, R., Peng, B., Gdoutos, E.E., and Espinosa, H.D.: Elasticity size effects in ZnO nanowires—a combined experimental-computational approach. Nano Lett. 8, 36683674 (2008).CrossRefGoogle ScholarPubMed
6.Bernal, R.A., Agrawal, R., Peng, B., Bertness, K.A., Sanford, N.A., Davydov, A.V., and Espinosa, H.D.: Effect of growth orientation and diameter on the elasticity of GaN Nanowires. A combined in situ TEM and atomistic modeling investigation. Nano Lett. 11, 548555 (2011).CrossRefGoogle ScholarPubMed
7.Huang, Y., Duan, X., Cui, Y., and Lieber, C.M.: Gallium nitride nanowire nanodevices. Nano Lett. 2, 101104 (2002).CrossRefGoogle Scholar
8.Zhong, Z., Qian, F., Wang, D., and Lieber, C.M.: Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3, 343346 (2003).CrossRefGoogle Scholar
9.Johnson, J.C., Choi, H.-J., Knutsen, K.P., Schaller, R.D., Yang, P., and Saykally, R.J.: Single gallium nitride nanowire lasers. Nat. Mater. 1, 106110 (2002).CrossRefGoogle ScholarPubMed
10.Huang, C.-T., Song, J., Lee, W.-F., Ding, Y., Gao, Z., Hao, Y., Chen, L.-J., and Wang, Z.L.: GaN nanowire arrays for high-output nanogenerators. J. Am. Chem. Soc. 132(13), 47664771 (2010).Google Scholar
11.Xu, X., Potie, A., Songmuang, R., Lee, J., Bercu, B., Baron, T., Salem, B., and Montes, L.: An improved AFM cross-sectional method for piezoelectric nanostructures properties investigation: application to GaN nanowires. Nanotechnology 22, 105704 (2011).CrossRefGoogle ScholarPubMed
12.Güthner, P. and Dransfeld, K.: Local poling of ferroelectric polymers by scanning force microscopy. Appl. Phys. Lett. 61, 1137 (1992).CrossRefGoogle Scholar
13.Kolosov, O., Gruverman, A., Hatano, J., Takahashi, K., and Tokumoto, H.: Nanoscale visualization and control of ferroelectric domains by atomic force microscopy. Phys. Rev. Lett. 74, 43094312 (1995).Google Scholar
14.Zhao, M.-H., Wang, Z.-L., and Mao, S.X.: Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 4, 587590 (2004).Google Scholar
15.Wang, J., Sandu, C.S., Colla, E., Wang, Y., Ma, W., Gysel, R., Trodahl, H.J., Setterb, N., and Kuball, M.: Ferroelectric domains and piezoelectricity in monocrystalline Pb(Zr,Ti)O3 nanowires. Appl. Phys. Lett. 90, 133107 (2007).Google Scholar
16.Yun, W.S., Urban, J.J., Gu, Q., and Park, H.: Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe microscopy. Nano Lett. 2, 447450 (2002).CrossRefGoogle Scholar
17.Wang, Z., Hu, J., and Yua, M.-F.: One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire. Appl. Phys. Lett. 89, 263119 (2006).Google Scholar
18.Minary-Jolandan, M. and Yu, M.-F.: Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone. ACS Nano 3, 18591863 (2009).CrossRefGoogle ScholarPubMed
19.Rodriguez, B.J., Gruverman, A., Kingon, A.I., and Nemanich, R.J.: Piezoresponse force microscopy for piezoelectric measurements of III-nitride materials. J. Crystal Growth 246, 252258 (2002).CrossRefGoogle Scholar
20.Agrawal, R. and Espinosa, H.D.: Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation. Nano Lett. 11(2), 786790 (2011).CrossRefGoogle ScholarPubMed
21.Bdikin, I.K., Gracio, J., Ayouchi, R., Schwarz, R., and Kholkin, A.L.: Local piezoelectric properties of ZnO thin films prepared by RF-plasma-assisted pulsed-laser deposition method. Nanotechnology 21, 235703 (2010).CrossRefGoogle ScholarPubMed
22.Bertness, K.A., Roshko, A., Mansfield, L.M., Harvey, T.E., and Sanford, N.A.: Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy. J. Crystal Growth 310, 31543158 (2008).CrossRefGoogle Scholar
23.Minary-Jolandan, M. and Yu, M.-F.: Nanoscale characterization of isolated individual type I collagen fibrils: Polarization and piezoelectricity. Nanotechnology 20, 085706 (2009).CrossRefGoogle ScholarPubMed
24.Bernardini, F. and Fiorentini, V.: First-principles calculation of the piezoelectric tensor d of III–V nitrides. Appl. Phys. Lett. 80, 4145 (2002).CrossRefGoogle Scholar
25.Muensit, S., Goldys, E.M., and Guy, I.L.: Shear piezoelectric coefficients of gallium nitride and aluminum nitride. Appl. Phys. Lett. 75, 3965 (1999).Google Scholar
Supplementary material: File

Minary-Jolandan Supplementary Material

Minary-Jolandan Supplementary Material

Download Minary-Jolandan Supplementary Material(File)
File 1.4 MB