Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T06:23:45.277Z Has data issue: false hasContentIssue false

Solution-based synthesis of carbon–hematite composite thin films for high-performance supercapacitor applications

Published online by Cambridge University Press:  01 December 2016

Jinzhan Su*
Affiliation:
State Key Laboratory of Multiphase Flow in Power Engineering, International Research Centre for Renewable Energy, Xi'an Jiaotong University, Shaanxi 710049, People's Republic of China.
Shangpu Liu
Affiliation:
State Key Laboratory of Multiphase Flow in Power Engineering, International Research Centre for Renewable Energy, Xi'an Jiaotong University, Shaanxi 710049, People's Republic of China.
Jian Wang
Affiliation:
State Key Laboratory of Multiphase Flow in Power Engineering, International Research Centre for Renewable Energy, Xi'an Jiaotong University, Shaanxi 710049, People's Republic of China.
Cong Liu
Affiliation:
State Key Laboratory of Multiphase Flow in Power Engineering, International Research Centre for Renewable Energy, Xi'an Jiaotong University, Shaanxi 710049, People's Republic of China.
Yufeng Li
Affiliation:
State Key Laboratory of Multiphase Flow in Power Engineering, International Research Centre for Renewable Energy, Xi'an Jiaotong University, Shaanxi 710049, People's Republic of China.
Dongyang Wu
Affiliation:
State Key Laboratory of Multiphase Flow in Power Engineering, International Research Centre for Renewable Energy, Xi'an Jiaotong University, Shaanxi 710049, People's Republic of China.
*
Address all correspondence to Jinzhan Su at [email protected]
Get access

Abstract

Supercapacitor has received intense interest due to its high-charge/discharge rate and high-power density. C/Fe2O3 layer with different C/Fe ratios were synthesized by a solution-based approach for supercapacitor application. The influence of synthesis conditions on their electrochemical performances was investigated. Cobalt was added into C/Fe2O3 and significant improved its performance. The optimal C/Fe2O3 sample gives a high specific capacitance of 85.3 F/g and the addition of Co3O4 further increase the capacitance of obtained C/Fe2O3/Co3O4 to 144.4 F/g at 5 A/g. This work demonstrates an efficient supercapacitor application of low-cost metal oxides and facile solution-based synthesis approach.

Type
Functional Oxides Research Letters
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Su, J. and Vayssieres, L.: A place in the sun for artificial photosynthesis? ACS Energy Lett. 1, 121 (2016).Google Scholar
2. Gallo, A., Simões-Moreira, J., Costa, H., Santos, M., and dos Santos, E.M.: Energy storage in the energy transition context: a technology review. Renew. Sustain. Energy Rev. 65, 800 (2016).Google Scholar
3. Wang, G., Zhang, L., and Zhang, J.: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797 (2012).Google Scholar
4. Gamby, J., Taberna, P., Simon, P., Fauvarque, J., and Chesneau, M.: Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101, 109 (2001).Google Scholar
5. Lin, T., Chen, I.-W., Liu, F., Yang, C., Bi, H., Xu, F., and Huang, F.: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508 (2015).Google Scholar
6. Kim, C.H., Wee, J.-H., Kim, Y.A., Yang, K.S., and Yang, C.-M.: Tailoring the pore structure of carbon nanofibers for achieving ultrahigh-energy-density supercapacitors using ionic liquids as electrolytes. J. Mater. Chem. A 4, 4763 (2016).Google Scholar
7. Shao, Y., El-Kady, M.F., Wang, L.J., Zhang, Q., Li, Y., Wang, H., Mousavi, M.F., and Kaner, R.B.: Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 44, 3639 (2015).Google Scholar
8. Zeng, Y., Yu, M., Meng, Y., Fang, P., Lu, X., and Tong, Y.: Iron-based supercapacitor electrodes: advances and challenges. Adv. Energy Mater. 1601053 (2016). doi: 10.1002/aenm.201601053.Google Scholar
9. Xia, C., Chen, W., Wang, X., Hedhili, M.N., Wei, N., and Alshareef, H.N.: Highly stable supercapacitors with conducting polymer core–shell electrodes for energy storage applications. Adv. Energy Mater. 5, 1401805 (2015).Google Scholar
10. Jiang, J., Li, Y., Liu, J., Huang, X., Yuan, C., and Lou, X.W.D.: Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24, 5166 (2012).CrossRefGoogle ScholarPubMed
11. Yang, P., Ding, Y., Lin, Z., Chen, Z., Li, Y., Qiang, P., Ebrahimi, M., Mai, W., Wong, C.P., and Wang, Z.L.: Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 14, 731 (2014).Google Scholar
12. Deng, J., Kang, L., Bai, G., Li, Y., Li, P., Liu, X., Yang, Y., Gao, F., and Liang, W.: Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4/CoO) nanoparticles as supercapacitor electrode materials. Electrochim. Acta 132, 127 (2014).Google Scholar
13. Binitha, G., Soumya, M., Madhavan, A.A., Praveen, P., Balakrishnan, A., Subramanian, K., Reddy, M., Nair, S.V., Nair, A.S., and Sivakumar, N.: Electrospun α-Fe2O3 nanostructures for supercapacitor applications. J. Mater. Chem. A 1, 11698 (2013).Google Scholar
14. Shivakumara, S., Penki, T.R., and Munichandraiah, N.: High specific surface area α-Fe2O3 nanostructures as high performance electrode material for supercapacitors. Mater. Lett. 131, 100 (2014).Google Scholar
15. Lorkit, P., Panapoy, M., and Ksapabutr, B.: Iron oxide-based supercapacitor from ferratrane precursor via sol–gel-hydrothermal process. Energy Proc. 56, 466 (2014).Google Scholar
16. Zhi, M., Xiang, C., Li, J., Li, M., and Wu, N.: Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5, 72 (2013).Google Scholar
17. Liao, Q., Li, N., Jin, S., Yang, G., and Wang, C.: All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 9, 5310 (2015).Google Scholar
18. Gu, S., Lou, Z., Li, L., Chen, Z., Ma, X., and Shen, G.: Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications. Nano Res. 9, 424 (2016).Google Scholar
19. Liu, L., Lang, J., Zhang, P., Hu, B., and Yan, X.: Facile synthesis of Fe2O3 nano-dots@ nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte. ACS Appl. Mater. Interfaces 8, 9335 (2016).Google Scholar
20. Liu, H., Zhang, J., Xu, D., Huang, L., Tan, S., and Mai, W.: Easy one-step hydrothermal synthesis of nitrogen-doped reduced graphene oxide/iron oxide hybrid as efficient supercapacitor material. J. Solid State Electrochem. 19, 135 (2015).Google Scholar
21. Liu, T.-C., Pell, W., and Conway, B.: Stages in the development of thick cobalt oxide films exhibiting reversible redox behavior and pseudocapacitance. Electrochim. Acta 44, 2829 (1999).CrossRefGoogle Scholar
22. Kaempgen, M., Chan, C.K., Ma, J., Cui, Y., and Gruner, G.: Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9, 1872 (2009).Google Scholar
23. Reddy, M., Yu, T., Sow, C.-H., Shen, Z.X., Lim, C.T., Subba Rao, G., and Chowdari, B.: α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 17, 2792 (2007).Google Scholar
24. Zhu, X., Zhu, Y., Murali, S., Stoller, M.D., and Ruoff, R.S.: Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5, 3333 (2011).Google Scholar
25. Balbuena, J., Carraro, G., Cruz, M., Gasparotto, A., Maccato, C., Pastor, A., Sada, C., Barreca, D., and Sánchez, L.: Advances in photocatalytic NOx abatement through the use of Fe2O3/TiO2 nanocomposites. RSC Adv. 6, 74878 (2016).Google Scholar
26. Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., and Thommes, M.: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537 (2011).Google Scholar
27. Li, Q., Li, K., Sun, C., and Li, Y.: An investigation of Cu2+ and Fe2+ ions as active materials for electrochemical redox supercapacitors. J. Electroanal. Chem. 611, 43 (2007).Google Scholar
28. Nie, G., Lu, X., Lei, J., Jiang, Z., and Wang, C.: Electrospun V2O5-doped α-Fe2O3 composite nanotubes with tunable ferromagnetism for high-performance supercapacitor electrodes. J. Mater. Chem. A 2, 15495 (2014).Google Scholar
29. Zhang, B., Li, W., Sun, J., He, G., Zou, R., Hu, J., and Chen, Z.: NiO/MnO2 core/shell nanocomposites for high-performance pseudocapacitors. Mater. Lett. 114, 40 (2014).Google Scholar
30. Armelao, L., Barreca, D., Bottaro, G., Gasparotto, A., Maragno, C., and Tondello, E.: Hybrid chemical vapor deposition/sol–gel route in the preparation of nanophasic LaCoO3 films. Chem. Mater. 17, 427 (2005).CrossRefGoogle Scholar
31. Wang, X., Chen, X., Gao, L., Zheng, H., Zhang, Z., and Qian, Y.: One-dimensional arrays of Co3O4 nanoparticles: synthesis, characterization, and optical and electrochemical properties. J. Phys. Chem. B 108, 16401 (2004).CrossRefGoogle Scholar
32. Jimenez, V., Fernandez, A., Espinos, J., and González-Elipe, A.: The state of the oxygen at the surface of polycrystalline cobalt oxide. J. Electron Spectrosc. Relat. Phenom. 71, 61 (1995).Google Scholar
Supplementary material: File

Su supplementary material

Figures S1-S8

Download Su supplementary material(File)
File 1.3 MB