Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-30T07:39:37.090Z Has data issue: false hasContentIssue false

Self-assembled vertical heteroepitaxial nanostructures: from growth to functionalities

Published online by Cambridge University Press:  13 May 2014

Heng-Jui Liu
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
Wen-I Liang
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
Ying-Hao Chu*
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
Haimei Zheng
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
Ramamoorthy Ramesh
Affiliation:
Department of Materials Science and Engineering, University of California, Berkeley, California 94720
*
Address all correspondence to Ying-Hao Chu at[email protected]
Get access

Abstract

Self-assembled vertical heteroepitaxial nanostructures (VHN) in the complex oxide field have fascinated scientists for decades because they provide degrees of freedom to explore in condensed matter physics and design-coupled multifunctionlities. Recently, of particular interest is the perovskite-spinel-based VHN, covering a wide spectrum of promising applications. In this review, fabrication of VHN, their growth mechanism, control, and resulting novel multifunctionalities are discussed thoroughly, providing researchers a comprehensive blueprint to construct promising VHN. Following the fabrication section, the state-of-the-art design concepts for multifunctionalities are proposed and reviewed by suitable examples. By summarizing the outlook of this field, we are excitedly expecting this field to rise with significant contributions ranging from scientific value to practical applications in the foreseeable future.

Type
Prospective Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.MacManus-Driscoll, J.L.: Self-assembled heteroepitaxial oxide nanocomposite thin film structures: designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 20, 2035 (2010).CrossRefGoogle Scholar
2.Nan, C.-W., Bichurin, M.I., Dong, S., Viehland, D., and Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).CrossRefGoogle Scholar
3.Ramesh, R. and Spaldin, N.A.: Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21 (2007).CrossRefGoogle ScholarPubMed
4.Schlom, D.G., Chen, L.-Q., Pan, X., Schmehl, A., and Zurbuchen, M.A.: A thin film approach to engineering functionality into oxides. J. Am. Ceram. Soc. 91, 2429 (2008).Google Scholar
5.Newnham, R.E. and Trolier-McKinstry, S.: Crystals and composites. J. Appl. Crystallogr. 23, 447 (1990).Google Scholar
6.Lebedev, O.I., Verbeeck, J., Van Tendeloo, G., Shapoval, O., Belenchuk, A., Moshnyaga, V., Damashcke, B., and Samwer, K.: Structural phase transitions and stress accommodation in (La0.67Ca0.33MnO3)1−x:(MgO)x composite films. Phys. Rev. B 66, 104421 (2002).Google Scholar
7.Moshnyaga, V., Damaschke, B., Shapoval, O., Belenchuk, A., Faupel, J., Lebedev, O.I., Verbeeck, J., van Tendeloo, G., Mucksch, M., Tsurkan, V., Tidecks, R., and Samwer, K.: Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1−x:(MgO)x nanocomposite films. Nat. Mater. 2, 247 (2003).Google Scholar
8.Zheng, H., Straub, F., Zhan, Q., Yang, P.L., Hsieh, W.K., Zavaliche, F., Chu, Y.-H., Dahmen, U., and Ramesh, R.: Self-assembled growth of BiFeO3–CoFe2O4 nanostructures. Adv. Mater. 18, 2747 (2006).CrossRefGoogle Scholar
9.Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., and Ramesh, R.: Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661 (2004).Google Scholar
10.Zheng, H., Zhan, Q., Zavaliche, F., Sherburne, M., Straub, F., Cruz, M.P., Chen, L.-Q., Dahmen, U., and Ramesh, R.: Controlling self-assembled Perovskite-spinel nanostructures. Nano Lett. 6, 1401 (2006).Google Scholar
11.Chen, A., Bi, Z., Tsai, C.-F., Lee, J., Su, Q., Zhang, X., Jia, Q., MacManus-Driscoll, J.L., and Wang, H.: Tunable low-field magnetoresistance in (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 self-assembled vertically aligned nanocomposite thin films. Adv. Funct. Mater. 21, 2423 (2011).Google Scholar
12.Yang, H., Wang, H., Yoon, J., Wang, Y., Jain, M., Feldmann, D.M., Dowden, P.C., MacManus-Driscoll, J.L., and Jia, Q.: Vertical interface effect on the physical properties of self-assembled nanocomposite epitaxial films. Adv. Mater. 21, 3794 (2009).CrossRefGoogle Scholar
13.HarringtonSophie, A., Zhai, J., Denev, S., Gopalan, V., Wang, H., Bi, Z., RedfernSimon, A.T., Baek, S.-H., Bark, C.W., Eom, C.-B., Jia, Q., Vickers, M.E., and MacManus-Driscoll, J.L.: Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain. Nat. Nano 6, 491 (2011).Google Scholar
14.Liao, S.-C., Tsai, P.-Y., Liang, C.-W., Liu, H.-J., Yang, J.-C., Lin, S.-J., Lai, C.-H., and Chu, Y.-H.: Misorientation control and functionality design of nanopillars in self-assembled Perovskite − Spinel heteroepitaxial nanostructures. ACS Nano 5, 4118 (2011).Google Scholar
15.Liu, H.-J., Chen, L.-Y., He, Q., Liang, C.-W., Chen, Y.-Z., Chien, Y.-S., Hsieh, Y.-H., Lin, S.-J., Arenholz, E., Luo, C.-W., Chueh, Y.-L., Chen, Y.-C., and Chu, Y.-H.: Epitaxial photostriction–magnetostriction coupled self-assembled nanostructures. ACS Nano 6, 6952 (2012).CrossRefGoogle ScholarPubMed
16.Aimon, N.M., Kim, D.H., Choi, H.K., and Ross, C.A.: Deposition of epitaxial BiFeO3/CoFe2O4 nanocomposites on (001) SrTiO3 by combinatorial pulsed laser deposition. Appl. Phys. Lett. 100, 092901 (2012).CrossRefGoogle Scholar
17.Comes, R., Khokhlov, M., Liu, H., Lu, J., and Wolf, S.A.: Magnetic anisotropy in composite CoFe2O4–BiFeO3 ultrathin films grown by pulsed-electron deposition. J. Appl. Phys. 111, 07D914 (2012).CrossRefGoogle Scholar
18.Staruch, M., Hires, D., Chen, A., Bi, Z., Wang, H., and Jain, M.: Enhanced low-field magnetoresistance in La0.67Sr0.33MnO3:MgO composite films. J. Appl. Phys. 110, 113913 (2011).Google Scholar
19.Hsieh, Y.-H., Kuo, H.-H., Liao, S.-C., Liu, H.-J., Chen, Y.-J., Lin, H.-J., Chen, C.-T., Lai, C.-H., Zhan, Q., Chueh, Y.-L., and Chu, Y.-H.: Tuning the formation and functionalities of ultrafine CoFe2O4 nanocrystals via interfacial coherent strain. Nanoscale 5, 6219 (2013).CrossRefGoogle ScholarPubMed
20.Wu, D.: Nucleation theory. Solid State Phys. 50, 37 (1996).Google Scholar
21.Srinivasan, G., Rasmussen, E.T., Gallegos, J., Srinivasan, R., Bokhan, Y.I., and Laletin, V.M.: Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 64, 214408 (2001).Google Scholar
22.Yan, L., Bai, F., Li, J., and Viehland, D.: Nanostructures in perovskite–ferrite two-phase composite epitaxial thin films. Phil. Mag. 90, 103 (2009).Google Scholar
23.Yan, L., Yang, Y., Wang, Z., Xing, Z., Li, J., and Viehland, D.: Review of magnetoelectric perovskite–spinel self-assembled nano-composite thin films. J. Mater. Sci. 44, 5080 (2009).CrossRefGoogle Scholar
24.Stern, I., He, J., Zhou, X., Silwal, P., Miao, L., Vargas, J.M., Spinu, L., and Kim, D.H.: Role of spinel substrate in the morphology of BiFeO3–CoFe2O4 epitaxial nanocomposite films. Appl. Phys. Lett. 99, 082908 (2011).Google Scholar
25.Levin, I., Li, J., Slutsker, J., and Roytburd, A.L.: Design of self-assembled multiferroic nanostructures in epitaxial films. Adv. Mater. 18, 2044 (2006).CrossRefGoogle Scholar
26.Artemev, A., Slutsker, J., and Roytburd, A.L.: Phase field modeling of self-assembling nanostructures in constrained films. Acta Mater. 53, 3425 (2005).Google Scholar
27.MacManus-Driscoll, J.L., Zerrer, P., Wang, H., Yang, H., Yoon, J., Fouchet, A., Yu, R., Blamire, M.G., and Jia, Q.: Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 7, 314 (2008).Google Scholar
28.Mathur, N.: Materials science: a desirable wind up. Nature 454, 591 (2008).Google Scholar
29.Nan, C.-W., Liu, G., Lin, Y., and Chen, H.: Magnetic-field-induced electric polarization in multiferroic nanostructures. Phys. Rev. Lett. 94, 197203 (2005).CrossRefGoogle ScholarPubMed
30.Wang, Y., Hu, J., Lin, Y., and Nan, C.-W.: Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2, 61 (2010).CrossRefGoogle Scholar
31.Sun, K.H. and Kim, Y.Y.: Design of magnetoelectric multiferroic heterostructures by topology optimization. J. Phys. D: Appl. Phys. 44, 185003 (2011).Google Scholar
32.Caruntu, G., Yourdkhani, A., Vopsaroiu, M., and Srinivasan, G.: Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse force microscopy. Nanoscale 4, 3218 (2012).Google Scholar
33.Ren, S.Q., Weng, L.Q., Song, S.H., Li, F., Wan, J.G., and Zeng, M.: BaTiO3/CoFe2O4 particulate composites with large high frequency magnetoelectric response. J. Mater. Sci. 40, 4375 (2005).Google Scholar
34.Ramanaa, M.V., Reddy, N.R., Sreenivasulu, G., Kumar, K.V.S., Murty, B.S., and Murthy, V.R.K.: Enhanced mangnetoelectric voltage in multiferroic particulate Ni0.83Co0.15Cu0.02Fe1.9O4−δ/PbZr0.52Ti0.48O3 composites—dielectric, piezoelectric and magnetic properties. Curr. Appl. Phys. 9, 1134 (2009).Google Scholar
35.Wu, D., Gong, W., Deng, H., and Li, M.: Magnetoelectric composite ceramics of nickel ferrite and lead zirconate titanate via in situ processing. J. Phys. D: Appl. Phys. 40, 5002 (2007).CrossRefGoogle Scholar
36.Zavaliche, F., Zheng, H., Mohaddes-Ardabili, L., Yang, S.Y., Zhan, Q., Shafer, P., Reilly, E., Chopdekar, R., Jia, Y., Wright, P., Schlom, D.G., Suzuki, Y., and Ramesh, R.: Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793 (2005).Google Scholar
37.Slutsker, J., Levin, I., Li, J., Artemev, A., and Roytburd, A.L.: Effect of elastic interactions on the self-assembly of multiferroic nanostructures in epitaxial films. Phys. Rev. B 73, 184127 (2006).Google Scholar
38.Landau, L.D. and Liftshitz, E.M.: Electrodynamics of Continuous Media (Pergamon Press, Oxford, 119, 1960).Google Scholar
39.Li, J., Levin, I., Slutsker, J., Provenzano, V., Schenck, P.K., Ramesh, R., Ouyang, J., and Roytburd, A.L.: Self-assembled multiferroic nanostructures in the CoFe2O4–PbTiO3 system. Appl. Phys. Lett. 87, 072909 (2005).Google Scholar
40.Tsai, C.Y., Chen, H.R., Chang, F.C., Tsai, W.C., Cheng, H.M., Chu, Y.-H., Lai, C.H., and Hsieh, W.F.: Stress-mediated magnetic anisotropy and magnetoelastic coupling in epitaxial multiferroic PbTiO3–CoFe2O4 nanostructures. Appl. Phys. Lett. 102, 132905 (2013).Google Scholar
41.Ren, S. and Wuttig, M.: Spinodally synthesized magnetoelectric. Appl. Phys. Lett. 91, 083501 (2007).CrossRefGoogle Scholar
42.Wan, J.G., Wang, X.W., Wu, Y.J., Zeng, M., Wang, Y., Jiang, H., Zhou, W.Q., Wang, G.H., and Liu, J.-M.: Magnetoelectric CoFe2O4–Pb(Zr,Ti)O3 composite thin films derived by a sol–gel process. Appl. Phys. Lett. 86, 122501 (2005).Google Scholar
43.Zhang, J., Fu, H., Lu, W., Dai, J., and Chan, H.L.W.: Nanoscale free-standing magnetoelectric heteropillars. Nanoscale 5, 6747 (2013).Google ScholarPubMed
44.Crane, S.P., Bihler, C., Brandt, M.S., Goennenwein, S.T.B., Gajek, M., and Ramesh, R.: Tuning magnetic properties of magnetoelectric BiFeO3–NiFe2O4 nanostructures. J. Magn. Magn. Mater. 321, L5 (2009).Google Scholar
45.Zhan, Q., Yu, R., Crane, S.P., Zheng, H., Kisielowski, C., and Ramesh, R.: Structure and interface chemistry of perovskite–spinel nanocomposite thin films. Appl. Phys. Lett. 89, 172902 (2006).Google Scholar
46.Chu, Y.-H., Zhan, Q., Martin, L.W., Cruz, M.P., Yang, P.L., Pabst, G.W., Zavaliche, F., Yang, S.Y., Zhang, J.X., Chen, L.Q., Schlom, D.G., Lin, I.N., Wu, T.B., and Ramesh, R.: Nanoscale domain control in multiferroic BiFeO3 thin films. Adv. Mater. 18, 2307 (2006).Google Scholar
47.Pabst, G.W., Martin, L.W., Chu, Y.-H., and Ramesh, R.: Leakage mechanisms in BiFeO3 thin films. Appl. Phys. Lett. 90, 072902 (2007).Google Scholar
48.Yan, L., Xing, Z., Wang, Z., Wang, T., Lei, G., Li, J., and Viehland, D.: Direct measurement of magnetoelectric exchange in self-assembled epitaxial BiFeO3–CoFe2O4 nanocomposite thin films. Appl. Phys. Lett. 94, 192902 (2009).Google Scholar
49.Oh, Y.S., Crane, S., Zheng, H., Chu, Y.-H., Ramesh, R., and Kim, K.H.: Quantitative determination of anisotropic magnetoelectric coupling in BiFeO3–CoFe2O4 nanostructures. Appl. Phys. Lett. 97, 052902 (2010).CrossRefGoogle Scholar
50.Zavaliche, F., Zhao, T., Zheng, H., Straub, F., Cruz, M.P., Yang, P.L., Hao, D., and Ramesh, R.: Electrically assisted magnetic recording in multiferroic nanostructures. Nano Lett. 7, 1586 (2007).Google Scholar
51.Zhao, T., Scholl, A., Zavaliche, F., Zheng, H., Barry, M., Doran, A., Lee, K., Cruz, M.P., and Ramesh, R.: Nanoscale x-ray magnetic circular dichroism probing of electric-field-induced magnetic switching in multiferroic nanostructures. Appl. Phys. Lett. 90, 123104 (2007).Google Scholar
52.Chen, Y.-J., Hsieh, Y.-H., Liao, S.-C., Hu, Z., Huang, M.-J., Kuo, W.-C., Chin, Y.-Y., Uen, T.-M., Juang, J.-Y., Lai, C.-H., Lin, H.-J., Chen, C.-T., and Chu, Y.-H.: Strong magnetic enhancement in self-assembled multiferroic-ferrimagnetic nanostructures. Nanoscale 5, 4449 (2013).Google Scholar
53.Dix, N., Muralidharan, R., Guyonnet, J., Warot-Fonrose, B., Varela, M., Paruch, P., Sánchez, F., and Fontcuberta, J.: On the strain coupling across vertical interfaces of switchable BiFeO3–CoFe2O4 multiferroic nanostructures. Appl. Phys. Lett. 95, 062907 (2009).Google Scholar
54.Kalinin, S.V., Morozovska, A.N., Chen, L.Q., and Rodriguez, B.J.: Local polarization dynamics in ferroelectric materials. Rep. Prog. Phys. 73, 056502 (2010).Google Scholar
55.Rodriguez, B.J., Jesse, S., Baddorf, A.P., Zhao, T., Chu, Y.-H., Ramesh, R., Eliseev, E.A., Morozovska, A.N., and Kalinin, S.V.: Spatially resolved mapping of ferroelectric switching behavior in self-assembled multiferroic nanostructures: strain, size, and interface effects. Nanotechnology 18, 405701 (2007).Google Scholar
56.Poosanaas, P., Tonooka, K., and Uchino, K.: Photostrictive actuators. Mechatronics 10, 467 (2000).Google Scholar
57.Uchino, K. and Aizawa, M.: Photostrictive actuator using PLZT ceramics. Japan. J. Appl. Phys. 24S3, 139 (1985).Google Scholar
58.Schmising, C.v.K., Bargheer, M., Kiel, M., Zhavoronkov, N., Woerner, M., Elsaesser, T., Vrejoiu, I., Hesse, D., and Alexe, M.: Strain propagation in nanolayered perovskites probed by ultrafast x-ray diffraction. Phys. Rev. B 73, 212202 (2006).Google Scholar
59.Schmising, C.v.K., Bargheer, M., Kiel, M., Zhavoronkov, N., Woerner, M., Elsaesser, T., Vrejoiu, I., Hesse, D., and Alexe, M.: Coupled ultrafast lattice and polarization dynamics in ferroelectric nanolayers. Phys. Rev. Lett. 98, 257601 (2007).Google Scholar
60.Schmising, C.v.K., Harpoeth, A., Zhavoronkov, N., Ansari, Z., Aku-Leh, C., Woerner, M., Elsaesser, T., Bargheer, M., Schmidbauer, M., Vrejoiu, I., Hesse, D., and Alexe, M.: Ultrafast magnetostriction and phonon-mediated stress in a photoexcited ferromagnet. Phys. Rev. B 78, 060404R (2008).Google Scholar
61.Schmising, C.v.K., Bargheer, M., Kiel, M., Zhavoronkov, N., Woerner, M., Elsaesser, T., Vrejoiu, I., Hesse, D., and Alexe, M.: Ultrafast structure and polarization dynamics in nanolayered perovskites studied by femtosecond X-ray diffraction. J. Phys.: Conf. Ser. 92, 012177 (2007).Google Scholar
62.Driza, N., Blanco-Canosa, S., Bakr, M., Soltan, S., Khalid, M., Mustafa, L., Kawashima, K., Christiani, G., Habermeier, H.U., Khaliullin, G., Ulrich, C., Le Tacon, M., and Keimer, B.: Long-range transfer of electron–phonon coupling in oxide superlattices. Nat. Mater. 11, 675 (2012).Google Scholar
63.Heinze, S., Habermeier, H.-U., Cristiani, G., Canosa, S.B., Tacon, M.L., and Keimer, B.: Thermoelectric properties of YBa2Cu3O7−δ–La2/3Ca1/3MnO3 superlattices. Appl. Phys. Lett. 101, 131603 (2012).Google Scholar
64.Bednorz, J.G. and Müller, K.A.: Possible high T C superconductivity in the Ba−La−Cu−O system. Z. Phys. B: Condens. Matter 64, 189 (1986).Google Scholar
65.Larbalestier, D., Gurevich, A., Feldmann, D.M., and Polyanskii, A.: High-T C superconducting materials for electric power applications. Nature 414, 368 (2001).Google Scholar
66.Dam, B., Huijbregtse, J.M., Klaassen, F.C., van der Geest, R.C.F., Doornbos, G., Rector, J.H., Testa, A.M., Freisem, S., Martinez, J.C., Stauble-Pumpin, B., and Griessen, R.: Origin of high critical currents in YBa2Cu3O7−δ superconducting thin films. Nature 399, 439 (1999).Google Scholar
67.Matsushita, T.: Flux pinning in superconducting 123 materials. Supercond. Sci. Technol. 13, 730 (2000).Google Scholar
68.MacManus-Driscoll, J.L., Foltyn, S.R., Jia, Q.X., Wang, H., Serquis, A., Civale, L., Maiorov, B., Hawley, M.E., Maley, M.P., and Peterson, D.E.: Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7−x + BaZrO3. Nat. Mater. 3, 439 (2004).Google Scholar
69.Haugan, T., Barnes, P.N., Wheeler, R., Meisenkothen, F., and Sumption, M.: Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7−x superconductor. Nature 430, 867 (2004).CrossRefGoogle ScholarPubMed
70.Goyal, A., Kang, S., Leonard, K.J., Martine, P.M., Gapud, A.A., Varela, M., Paranthaman, M., Ijaduola, A.O., Specht, E.D., Thompson, j.R., Chrhten, D.K., Pennycook, S.J., and List, F.A.: Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7−δ films. Supercond. Sci. Technol. 18, 1533 (2005).CrossRefGoogle Scholar
71.Lee, S., Jiang, J., Zhang, Y., Bark, C.W., Weiss, J.D., Tarantini, C., Nelson, C.T., Jang, H.W., Folkman, C.M., Baek, S.H., Polyanskii, A., Abraimov, D., Yamamoto, A., Park, J.W., Pan, X.Q., Hellstrom, E.E., Larbalestier, D.C., and Eom, C.B.: Template engineering of co-doped BaFe2As2 single-crystal thin films. Nat. Mater. 9, 397 (2010).Google Scholar
72.Lee, S., Tarantini, C., Gao, P., Jiang, J., Weiss, J.D., Kametani, F., Folkman, C.M., Zhang, Y., Pan, X.Q., Hellstrom, E.E., Larbalestier, D.C., and Eom, C.B.: Artificially engineered superlattices of pnictide superconductors. Nat. Mater. 12, 392 (2013).Google Scholar
73.Callister, W.D.J.: Materials Science and Engineering: An Introduction, 7th ed. (Wiley, 2006) p. 110,129.Google Scholar
74.Dagotto, E.: Complexity in strongly correlated electronic systems. Science 309, 257 (2005).Google Scholar
75.Mannhart, J. and Schlom, D.G.: Oxide interfaces—an opportunity for electronics. Science 327, 1607 (2010).Google Scholar
76.Liang, W.-I., Liu, Y., Liao, S.-C., Wang, W.-C., Liu, H.-J., Lin, H.-J., Chen, C.-T., Lai, C.-H., Borisevich, A., Arenholz, E., Li, J., and Chu, Y.-H.: Design magnetoelectric coupling in a self-assembled epitaxial nano-composite via chemical interaction. J. Mater. Chem. C, 2, 811 (2014)Google Scholar
77.Hankare, P.P., Patil, R.P., Sankpal, U.B., Jadhav, S.D., Mulla, I.S., Jadhav, K.M., and Chougule, B.K.: Magnetic and dielectric properties of nanophase manganese-substituted lithium ferrite. J. Magn. Magn. Mater. 321, 3270 (2009).Google Scholar
78.Zener, C.: Interaction between the d shells in the transition metals. Phys. Rev. 81, 440 (1951).Google Scholar
79.Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., and Chen, L.H.: Thousandfold change in resistivity in magnetoresistive La–Ca–Mn–O films. Science 264, 413 (1994).Google Scholar
80.Snyder, G.J., Hiskes, R., DiCarolis, S., Beasley, M.R., and Geballe, T.H.: Intrinsic electrical transport and magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 MOCVD thin films and bulk material. Phys. Rev. B 53, 14434 (1996).Google Scholar
81.Gross, R., Alff, L., Büchner, B., Freitag, B.H., Höfener, C., Klein, J., Lu, Y., Mader, W., Philipp, J.B., Rao, M.S.R., Reutler, P., Ritter, S., Thienhaus, S., Uhlenbruck, S., and Wiedenhorst, B.: Physics of grain boundaries in the colossal magnetoresistance manganites. J. Magn. Magn. Mater. 211, 150 (2000).Google Scholar
82.Huang, Y.H., Karppinen, M., Yamauchi, H., and Goodenough, J.B.: Effect of high-pressure annealing on magnetoresistance in manganese perovskites. J. Appl. Phys. 98, 033911 (2005).Google Scholar
83.Hwang, H.Y., Cheong, S.W., Ong, N.P., and Batlogg, B.: Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3. Phys. Rev. Lett. 77, 2041 (1996).Google Scholar
84.Liu, H.-J., Tra, V.-T., Chen, Y.-J., Huang, R., Duan, C.-G., Hsieh, Y.-H., Lin, H.-J., Lin, J.-Y., Chen, C.-T., Ikuhara, Y., and Chu, Y.-H.: Large magnetoresistance in magnetically coupled SrRuO3–CoFe2O4 self-assembled nanostructures. Adv. Mater. 25, 4753 (2013).Google ScholarPubMed
85.Pokropivny, V.V. and Skorokhod, V.V.: New dimensionality classifications of nanostructures. Physica E 40, 2521 (2008).Google Scholar
86.Hsieh, Y.-H., Liou, J.-M., Huang, B.-C., Liang, C.-W., He, Q., Zhan, Q., Chiu, Y.-P., Chen, Y.-C., and Chu, Y.-H.: Local conduction at the BiFeO3–CoFe2O4 tubular oxide interface. Adv. Mater. 24, 4564 (2012).Google Scholar
87.Vidal, F., Schio, P., Keller, N., Zheng, Y., Demaille, D., Bonilla, F.J., Milano, J., and de Oliveira, A.J.A.: Magneto-optical study of slanted Co nanowires embedded in CeO2/SrTiO3(0 01). Physica B 407, 3070 (2012).Google Scholar
88.Vidal, F., Zheng, Y., Milano, J., Demaille, D., Schio, P., Fonda, E., and Vodungbo, B.: Nanowires formation and the origin of ferromagnetism in a diluted magnetic oxide. Appl. Phys. Lett. 95, 152510 (2009).Google Scholar
89.Comes, R., Liu, H., Khokhlov, M., Kasica, R., Lu, J., and Wolf, S.A.: Directed self-assembly of epitaxial CoFe2O4–BiFeO3 multiferroic nanocomposites. Nano Lett. 12, 2367 (2012).Google Scholar
90.Lee, W., Han, H., Lotnyk, A., Schubert, M.A., Senz, S., Alexe, M., Hesse, D., Baik, S., and Gösele, U.: Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch−2 density. Nat. Nanotechnol. 3, 402 (2008).Google Scholar
91.Wolf, S.A., Jiwei, L., Stan, M.R., Chen, E., and Treger, D.M.: The promise of nanomagnetics and spintronics for future logic and universal memory. Proc. IEEE 98, 2155 (2010).CrossRefGoogle Scholar