Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T07:34:00.789Z Has data issue: false hasContentIssue false

Scalable laser powder bed fusion processing of nitinol shape memory alloy

Published online by Cambridge University Press:  26 September 2019

Ian McCue
Affiliation:
Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory (JHU/APL), Laurel, MD20723, USA
Christopher Peitsch
Affiliation:
Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory (JHU/APL), Laurel, MD20723, USA
Tim Montalbano
Affiliation:
Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory (JHU/APL), Laurel, MD20723, USA
Andrew Lennon
Affiliation:
Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory (JHU/APL), Laurel, MD20723, USA
Joseph Sopcisak
Affiliation:
Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory (JHU/APL), Laurel, MD20723, USA
Morgana M. Trexler*
Affiliation:
Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory (JHU/APL), Laurel, MD20723, USA
Steven Storck*
Affiliation:
Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory (JHU/APL), Laurel, MD20723, USA
*
Address all correspondence to Steven Storck at [email protected] and Morgan M. Trexler at [email protected]
Address all correspondence to Steven Storck at [email protected] and Morgan M. Trexler at [email protected]
Get access

Abstract

The authors report on pulsed laser powder bed fusion fabrication of nitinol (NiTi) shape memory materials. The authors first performed single-track laser parameter sweeps to assess melt pool stability and determine energy parameters and hatch spacing for larger builds. The authors then assessed the melt pool chemistry as a function of laser energy density and build plate composition. Brittle intermetallics were found to form at the part/build plate interface for both N200 and Ti-6-4 substrates. The intermetallic formation was reduced by building on a 50Ni–50Ti substrate, but delamination still occurred due to thermal stresses upon cooling. The authors were able to overcome delamination on all substrates and fabricate macroscopic parts by building a lattice support structure, which is both compliant and controls heat transfer into the build plate. This approach will enable scalable fabrication of complex NiTi parts.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Elahinia, M., Shayesteh Moghaddam, N., Taheri Andani, M., Amerinatanzi, A., Bimber, B.A., and Hamilton, R.F.: Fabrication of NiTi through additive manufacturing: a review. Prog. Mater. Sci. 83, 630 (2016).10.1016/j.pmatsci.2016.08.001CrossRefGoogle Scholar
2.Khoo, Z., Liu, Y., An, J., Chua, C., Shen, Y., and Kuo, C.: A review of selective laser melted NiTi shape memory alloy. Materials (Basel). 11, 519 (2018).10.3390/ma11040519CrossRefGoogle ScholarPubMed
3.Franco, B.E., Ma, J., Loveall, B., Tapia, G.A., Karayagiz, K., Liu, J., Elwany, A., Arroyave, R., and Karaman, I.: A sensory material approach for reducing variability in additively manufactured metal parts. Sci. Rep. 7, 3604 (2017).10.1038/s41598-017-03499-xCrossRefGoogle ScholarPubMed
4.Ma, J., Franco, B., Tapia, G., Karayagiz, K., Johnson, L., Liu, J., Arroyave, R., Karaman, I., and Elwany, A.: Spatial control of functional response in 4D-printed active metallic structures. Sci. Rep. 7, 46707 (2017).10.1038/srep46707CrossRefGoogle ScholarPubMed
5.Kumar, P.K. and Lagoudas, D.C.: Shape Memory Alloys (Springer US, Boston, MA, USA, 2008), pp. 115.Google Scholar
6.Dadbakhsh, S., Speirs, M., Van Humbeeck, J., and Kruth, J.-P.: Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: from processes to potential biomedical applications. MRS Bull. 41, 765 (2016).10.1557/mrs.2016.209CrossRefGoogle Scholar
7.Hamilton, R.F., Palmer, T.A., and Bimber, B.A.: Spatial characterization of the thermal-induced phase transformation throughout as-deposited additive manufactured NiTi bulk builds. Scr. Mater. 101, 56 (2015).10.1016/j.scriptamat.2015.01.018CrossRefGoogle Scholar
8.Dadbakhsh, S., Speirs, M., Kruth, J.-P., Schrooten, J., Luyten, J., and Van Humbeeck, J.: Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Adv. Eng. Mater. 16, 1140 (2014).10.1002/adem.201300558CrossRefGoogle Scholar
9.Mahmoudi, M., Tapia, G., Franco, B., Ma, J., Arroyave, R., Karaman, I., and Elwany, A.: On the printability and transformation behavior of nickel-titanium shape memory alloys fabricated using laser powder-bed fusion additive manufacturing. J. Manuf. Process. 35, 672 (2018).10.1016/j.jmapro.2018.08.037CrossRefGoogle Scholar
10.Hamilton, R.F., Bimber, B.A., Taheri Andani, M., and Elahinia, M.: Multi-scale shape memory effect recovery in NiTi alloys additive manufactured by selective laser melting and laser directed energy deposition. J. Mater. Process. Technol. 250, 55 (2017).10.1016/j.jmatprotec.2017.06.027CrossRefGoogle Scholar
11.Saedi, S., Turabi, A.S., Andani, M.T., Moghaddam, N.S., Elahinia, M., and Karaca, H.E.: Texture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys. Mater. Sci. Eng. A 686, 1 (2017).10.1016/j.msea.2017.01.008CrossRefGoogle Scholar
12.Elahinia, M., Shayesteh Moghaddam, N., Amerinatanzi, A., Saedi, S., Toker, G.P., Karaca, H., Bigelow, G.S., and Benafan, O.: Additive manufacturing of NiTiHf high temperature shape memory alloy. Scr. Mater. 145, 90 (2018).10.1016/j.scriptamat.2017.10.016CrossRefGoogle Scholar
13.Bormann, T., Schumacher, R., Müller, B., Mertmann, M., and de Wild, M.: Tailoring selective laser melting process parameters for NiTi implants. J. Mater. Eng. Perform. 21, 2519 (2012).10.1007/s11665-012-0318-9CrossRefGoogle Scholar
14.Jared, B.H., Aguilo, M.A., Beghini, L.L., Boyce, B.L., Clark, B.W., Cook, A., Kaehr, B.J., and Robbins, J.: Additive manufacturing: toward holistic design. Scr. Mater. 135, 141 (2017).10.1016/j.scriptamat.2017.02.029CrossRefGoogle Scholar
15.Thomas-Seale, L.E.J., Kirkman-Brown, J.C., Attallah, M.M., Espino, D.M., and Shepherd, D.E.T.: The barriers to the progression of additive manufacture: perspectives from UK industry. Int. J. Prod. Econ. 198, 104 (2018).10.1016/j.ijpe.2018.02.003CrossRefGoogle Scholar
16.DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., and Zhang, W.: Additive manufacturing of metallic components – process, structure and properties. Prog. Mater. Sci. 92, 112 (2018).10.1016/j.pmatsci.2017.10.001CrossRefGoogle Scholar
17.Thijs, L., Verhaeghe, F., Craeghs, T., Van Humbeeck, J., and Kruth, J.-P.: A study of the microstructural evolution during selective laser melting of Ti–6Al–4 V. Acta Mater. 58, 3303 (2010).10.1016/j.actamat.2010.02.004CrossRefGoogle Scholar
18.Matthews, M.J., Guss, G., Khairallah, S.A., Rubenchik, A.M., Depond, P.J., and King, W.E.: Denudation of metal powder layers in laser powder bed fusion processes. Acta Mater. 114, 33 (2016).10.1016/j.actamat.2016.05.017CrossRefGoogle Scholar
19.Khairallah, S.A., Anderson, A.T., Rubenchik, A., and King, W.E.: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 108, 36 (2016).10.1016/j.actamat.2016.02.014CrossRefGoogle Scholar
20.King, W., Anderson, A.T., Ferencz, R.M., Hodge, N.E., Kamath, C., and Khairallah, S.A.: Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory. Mater. Sci. Technol. 31, 957 (2015).10.1179/1743284714Y.0000000728CrossRefGoogle Scholar
21.Nickel, A.H., Barnett, D.M., and Prinz, F.B.: Thermal stresses and deposition patterns in layered manufacturing. Mater. Sci. Eng. A 317, 59 (2001).10.1016/S0921-5093(01)01179-0CrossRefGoogle Scholar
22.Hyun, S., Karlsson, A.M., Torquato, S., and Evans, A.G.: Simulated properties of Kagomé and tetragonal truss core panels. Int. J. Solids Struct. 40, 6989 (2003).10.1016/S0020-7683(03)00350-0CrossRefGoogle Scholar
23.Markkula, S., Storck, S., Burns, D., and Zupan, M.: Compressive behavior of pyramidal, tetrahedral, and strut-reinforced tetrahedral ABS and electroplated cellular solids. Adv. Eng. Mater. 11, 56 (2009).10.1002/adem.200800284CrossRefGoogle Scholar
Supplementary material: File

McCue et al. supplementary material

McCue et al. supplementary material

Download McCue et al. supplementary material(File)
File 5.2 MB