Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T05:31:30.535Z Has data issue: false hasContentIssue false

Review and perspective on ferroelectric HfO2-based thin films for memory applications

Published online by Cambridge University Press:  28 August 2018

Min Hyuk Park
Affiliation:
NaMLab gGmbH, Noethnitzer Str. 64, 01187 Dresden, Germany School of Materials Science and Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
Young Hwan Lee
Affiliation:
Department of Materials Science and Engineering, Inter-University Research Center, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
Thomas Mikolajick
Affiliation:
NaMLab gGmbH, Noethnitzer Str. 64, 01187 Dresden, Germany Chair of Nanoelectronic Materials, TU Dresden, Dresden 01069, Germany
Uwe Schroeder*
Affiliation:
NaMLab gGmbH, Noethnitzer Str. 64, 01187 Dresden, Germany
Cheol Seong Hwang*
Affiliation:
Department of Materials Science and Engineering, Inter-University Research Center, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
*
Address all correspondence to Uwe Schroeder at [email protected], Cheol Seong Hwang at [email protected]
Address all correspondence to Uwe Schroeder at [email protected], Cheol Seong Hwang at [email protected]
Get access

Abstract

The ferroelectricity in fluorite-structure oxides such as hafnia and zirconia has attracted increasing interest since 2011. They have various advantages such as Si-based complementary metal oxide semiconductor-compatibility, matured deposition techniques, a low dielectric constant and the resulting decreased depolarization field, and stronger resistance to hydrogen annealing. However, the wake-up effect, imprint, and insufficient endurance are remaining reliability issues. Therefore, this paper reviews two major aspects: the advantages of fluorite-structure ferroelectrics for memory applications are reviewed from a material's point of view, and the critical issues of wake-up effect and insufficient endurance are examined, and potential solutions are subsequently discussed.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Böscke, T.S., Müller, J., Bräuhaus, D., Schröder, U., and Böttger, U.: Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011).Google Scholar
2.Park, M.H., Lee, Y.H., Kim, H.J., Kim, Y.J., Moon, T., Kim, K.D., Müller, J., Kersch, A., Schroeder, U., Mikolajick, T., and Hwang, C.S.: Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 27, 1811 (2015).Google Scholar
3.Mikolajick, T., Slesazeck, S., Park, M.H., and Schroeder, U.: Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors. MRS Bull. 43, 340 (2018).Google Scholar
4.Müller, J., Polakowski, P., Mueller, S., and Mikolajick, T.: Ferroelectric hafnium oxide based materials and devices: assessment of current status and future prospects. ECS. J. Solid State Sci. Technol. 4, N30 (2015).Google Scholar
5.Hwang, C.S.: Prospective of semiconductor memory devices: from memory system to materials. Adv. Electron. Mater. 1, 1400056 (2015).Google Scholar
6.Schroeder, U., Yurchuk, E., Müller, J., Martin, D., Schenk, T., Polakowski, P., Adelmann, C., Popovici, M.I., Kalinin, S.V., and Mikolajick, T.: Impact of different dopants on the switching properties of ferroelectric hafnium oxide. Jpn. J. Appl. Phys. 53, 08LE02 (2014).Google Scholar
7.Müller, J., Yurchuk, E., Schlösser, T., Paul, J., Hoffmann, R., Mueller, S., Martin, D., Slesazeck, S., Polakowski, P., Sundqvist, J., Czernohorsky, M., Seidel, K., Kücher, P., Boschke, R., Trentzsch, M., Gebauer, K., Schröder, U., and Mikolajick, T.: Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG. VLSI Technology (VLSIT), 2012 Symposium on, 2012; pp. 2526.Google Scholar
8.Pešić, M., Knebel, S., Hoffmann, M., Richter, C., Mikolajick, T., and Schroeder, U.: How to make DRAM non-volatile? Anti-ferroelectrics: A new paradigm for universal memories. Electron Devices Meeting (IEDM), 2016 IEEE International, 2016; pp. 11.6.111.6.4.Google Scholar
9.Müller, J., Böscke, T.S., Müller, S., Yurchuk, E., Polakowski, P., Paul, J., Martin, D., Schenk, T., Khüllar, K., Kersch, A., Weinreich, W., Riedel, S., Seidel, K., Kumar, A., Arruda, T.M., Kalinin, S.V., Schlösser, T., Böschke, R., van Bentum, R., Schröder, U., and Mikolajick, T.: Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories. Electron Devices Meeting (IEDM), 2013 IEEE International, 2013; pp. 10.8.110.8.4.Google Scholar
10.Mulaosmanovic, H., Slesazeck, S., Ocker, J., Pešić, M., Muller, S., Flachowsky, S., Müller, J., Polakowski, P., Paul, J., Jansen, S., Kolodinski, S., Richter, C., Piontek, S., Schenk, T., Kersch, A., Kuenneth, C., van Bentum, R., Schroder, U., and Mikolajick, T.: Evidence of single domain switching in hafnium oxide based FeFETs: Enabler for multi-level FeFET memory cells. Electron Devices Meeting (IEDM), 2015 IEEE International, 2015; pp. 26.8.126.8.3.Google Scholar
11.Park, M.H., Kim, H.J., Kim, Y.J., Moon, T., Kim, K.D., and Hwang, C.S.: Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1−xO2 films. Nano Energy 12, 131 (2015).Google Scholar
12.Hoffmann, M., Schroeder, U., Künneth, C., Kersch, A., Starschich, S., Böttger, U., and Mikolajick, T.: Ferroelectric phase transitions in nanoscale HfO2 films enable giant pyroelectric energy conversion and highly efficient supercapacitors. Nano Energy 18, 154 (2015).Google Scholar
13.Park, M.H., Kim, H.J., Kim, Y.J., Moon, T., Kim, K.D., and Hwang, C.S.: Thin HfxZr1−xO2 films: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability. Adv. Energy Mater. 4, 1400610 (2014).Google Scholar
14.Kim, K.D., Lee, Y.H., Gwon, T., Kim, Y.J., Kim, H.J., Moon, T., Hyun, S.D., Park, H.W., Park, M.H., and Hwang, C.S.: Scale-up and optimization of HfO2-ZrO2 solid solution thin films for the electrostatic supercapacitors. Nano Energy 39, 390 (2017).Google Scholar
15.Park, M.H., Kim, H.J., Kim, Y.J., Moon, T., Kim, K.D., Lee, Y.H., Hyun, S.D., and Hwang, C.S.: Giant negative electrocaloric effects of Hf0.5Zr0.5O2 thin films. Adv. Mater. 28, 7956 (2016).Google Scholar
16.Park, M.H., Schenk, T., Hoffmann, M., Knebel, S., Gärtner, J., Mikolajick, T., and Schroede, U.: Effect of acceptor doping on phase transitions of HfO2 thin films for energy-related applications. Nano Energy 36, 381 (2017).Google Scholar
17.Smith, S.W., Kitahara, A.R., Rodriguez, M.A., Henry, M.D., Brumbach, M.T., and Ihlefeld, J.F.: Pyroelectric response in crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films. Appl. Phys. Lett. 110, 072901 (2017).Google Scholar
18.Jachalke, S., Schenk, T., Park, M.H., Schroeder, U., Mikolajick, T., Stöcker, H., Mehner, E., and Meyer, D.C.: Pyroelectricity of silicon-doped hafnium oxide thin films. Appl. Phys. Lett. 112, 142901 (2018).Google Scholar
19.Mulaosmanovic, H., Ocker, J., Müller, S., Noack, M., Müller, J., Polakowski, P., Mikolajick, T., and Slesazeck, S.: Novel ferroelectric FET based synapse for neuromorphic systems. VLSI Technology, 2017 Symposium on. doi: 10.23919/VLSIT. 2017. 7998165.Google Scholar
20.Mulaosmanovic, H., Mikolajick, T., and Slesazeck, S.: Random number generation based on ferroelectric switching. IEEE Electron Device Lett. 39, 135138 (2018).Google Scholar
21.Scott, J.F.: Ferroelectric Memories (Springer-Verlag, Berlin, Heidelberg, 2000). doi: 10.1007/978-3-662-04307-3.Google Scholar
22.Scott, J.F. and de Araujo, C.A.P.: Ferroelectric memories. Science 246, 1400 (1989).Google Scholar
23.Koo, J.-M., Seo, B.-S., Kim, S., Shin, S., Lee, J.-H., Baik, H., Lee, J.-H., Lee, J.H., Bae, B.-J., Lim, J.-E., Yoo, D.-C., Park, S.-O., Kim, H.-S., Han, H., Baik, S., Choi, J.-Y., Park, Y.J., and Park, Y.: Fabrication of 3D trench PZT capacitors for 256Mbit FRAM device application. IEDM Tech. Digest. 340343 (2005). DOI: 10.1109/IEDM.2005.1609345.Google Scholar
25.Okuyama, M.: Features, Principles and development of ferroelectric-gate field-effect transistor. Ch. 1. In Ferroelectric-gate Field Effect Transistor Memories, edited by Park, B.-E., Ishiwara, H., Okuyama, M., Sakai, S., and Yoon, S.-M., Topics in Applied Physics 131, (Springer Science+Business Media Dordrecht, Dordrecht, Netherlands, 2016.Google Scholar
26.Hwang, C.S. (ed.): Atomic Layer Deposition for Semiconductors, (Springer, New York, 2013).Google Scholar
27.Maruyama, K., Kondo, M., Singh, S.K., and Ishiwara, H.: New ferroelectric material for embedded FRAM LSIs. Fujitsu Sci. Tech. J 43, 502507 (2007).Google Scholar
28.Lines, M.E. and Glass, A.M.: Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, New York, USA, 2001).doi: 10.1093/acprof:oso/9780198507789.001.0001.Google Scholar
29.Shuai, Y., Zhou, S., Streit, S., Reuther, H., Bürger, D., Slesazeck, S., Mikolajick, T., Helm, M., and Schmidt, H.: Reduced leakage current in BiFeO3 thin films with rectifying contacts. Appl. Phys. Lett. 98, 232901 (2011).Google Scholar
30.Watanabe, T., Hoffmann-Eifert, S., Peter, F., Mi, S., Jia, C., Hwang, C.S., and Waser, R.: Liquid injection ALD of Pb(Zr,Ti)O3 thin films by a combination of self-regulating component oxide processes. J. Electrochem. Soc. 154, G262 (2007).Google Scholar
31.McDaniel, M.D., Ngo, T.Q., Hu, S., Posadas, A., Demkov, A.A., and Ekerdt, J.G.: Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors. Appl. Phys. Rev. 2, 041301 (2015).Google Scholar
32.Ihlefeld, J.F., Harris, D.T., Keech, R., Jones, J.L., Maria, J., and Trolier-McKinstry, S.: Scaling effects in perovskite ferroelectrics: fundamental limits and process-structure-property relations. J. Am. Ceram. Soc. 99, 25372557 (2016).Google Scholar
33.Tybell, T., Ahn, C.H., and Triscone, J.-M.: Ferroelectricity in thin perovskite films. Appl. Phys. Lett. 75, 856 (1999).Google Scholar
34.Junquera, J. and Ghosez, P.: Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506 (2003).Google Scholar
35.Fong, D.D., Brian Stephenson, G., Streiffer, S.K., Eastman, J.A., Auciello, O., Fuoss, P.H., and Thompson, C.: Ferroelectricity in ultrathin perovskite films. Science 304, 1650 (2004).Google Scholar
36.Sai, N., Kolpak, A.M., and Rappe, A.M.: Ferroelectricity in ultrathin perovskite films. Rhys. Rev. B 72, 020101 (2005).Google Scholar
37.Polakowski, P., Riedel, S., Weinreich, W., Rudolf, M., Sundqvist, J., Seidel, K., and Müller, J.: Memory Workshop (IMW), 2014 IEEE 6th International, doi: 10.1109/IMW.2014.6849367.Google Scholar
38.Pešić, M., Schroeder, U., and Mikolajick, T.: HfO2 based FeRAM and capacitor for 1T/1C memory cell. Ferroelectric one transistor-one capacitor memory cell: Ferroelectricity in Hafnium and Zirconium oxide: materials and devices (Elsevier), in preparation.Google Scholar
40.Fujii, S., Kamimuta, Y., Ino, T., Nahasaki, Y., Takaishi, R., and Saitoh, M.: First demonstration and performance improvement of ferroelectric HfO2-based resistive switch with low operation current and intrinsic diode property, VLSI Technology 2016 IEEE Symposium, 2016.Google Scholar
41.Max, B., Hoffmann, M., Slesazeck, S., and Mikolajick, T.: Ferroelectric Tunnel Junctions based on Ferroelectric-Dielectric HfZrO2/Al2O3 Capacitor Stack, European Solid State Device Research Conference (ESSDERC), 2018.Google Scholar
42.Pesic, M., di Lecce, V., Hoffmann, M., Mulaosmanovic, H., Max, B., Schröder, U., Slesazeck, S., Larcher, L., and Mikolajick, T.: Physical and circuit modeling of HfO2 based ferroelectric memories and devices. SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S) IEEE, 2017.Google Scholar
43.Ma, T.P. and Han, J.-P.: Why is nonvolatile ferroelectric memory field-effect transistor still elusive?. IEEE Electron Device Lett. 23, 386 (2002).Google Scholar
44.Schroeder, U., Slesazeck, S., and Mikolajick, T.: Nonvolatile field-effect transistors using ferroelectric doped HfO2 films. Ch. 3. In Ferroelectric-gate Field Effect Transistor Memories, edited by Park, B.-E., Ishiwara, H., Okuyama, M., Sakai, S., and Yoon, S.-M., Topics in Applied Physics 131, (Springer Science+Business Media Dordrecht, Dordrecht, Netherlands, 2016).Google Scholar
45.Aizawa, K., Park, B.-E., Kawashima, Y., Takahashi, K., and Ishiwara, H.: Impact of HfO2 buffer layers on data retention characteristics of ferroelectric-gate field-effect transistors. Appl. Phys. Lett. 85, 3199 (2004).Google Scholar
46.Sakai, S., Ilangovan, R., and Takahashi, M.: Pt/SrBi2Ta2O9/Hf-Al-O/Si Field-effect-transistor with long retention using unsaturated ferroelectric polarization switching. Jpn. J. Appl. Phys. 43, 7876 (2004).Google Scholar
47.Takahashi, M. and Sakai, S.: Self-aligned-gate Metal/Ferroelectric/Insulator/Semiconductor field-effect transistors with long memory retention. Jpn. J. Appl. Phys. 44, L800 (2005).Google Scholar
48.Hai, L.V., Takahashi, M., Zhang, W., and Sakai, S.: 100-nm-size ferroelectric-gate field-effect transistor with 108-cycle endurance. Jpn. J. Appl. Phys. 54, 088004 (2015).Google Scholar
49.Dünkel, S., Trentzsch, M., Richter, R., Moll, P., Fuchs, C., Gehring, O., Majer, M., Wittek, S., Müller, B., Melde, T., Mulaosmanovic, H., Slesazeck, S., Müller, S., Ocker, J., Noack, M., Löhr, D.-A., Polakowski, P., Müller, J., Mikolajick, T., Höntschel, J., Rice, B., Pellerin, J., and Beyer, S.: A FeFET based super-low-power ultra-fast embedded NVM technology for 22 nm FDSOI and beyond. Electron Devices Meeting (IEDM), 2017 IEEE International, 2017; pp. 19.7.119.7.4.Google Scholar
50.Gong, N., and Ma, T.P.: Why is retention time for HfO2-based ferroelectric longer than those for PZT or SBT in 1-T memory cell?, IEEE Electron Device Lett. 37, 1123 (2016).Google Scholar
51.Takahashi, K., Aizawa, K., Park, B.-E, and Ishiwara, H.: Thirty-day-long data retention in ferroelectric-gate field-effect transistors with HfO2 buffer layers. Jpn. J. Appl. Phys. 44, 6218 (2005).Google Scholar
52.Yurchuk, E., Müller, J., Paul, J., Schlösser, T., Martin, D., Hoffmann, R., Müeller, S., Slesazeck, S., Schröeder, U., Boschke, R., van Bentum, R., and Mikolajick, T.: Impact of scaling on the performance of HfO2-based ferroelectric field effect transistors. IEEE Trans. Electron Devices 61, 3699 (2014).Google Scholar
53.Genenko, Y.A., Zhukov, S., Yampolskii, S.V., Schütrumpf, J., Dittmer, R., Jo, W., Kungl, H., Hoffmann, M.J., and von Seggern, H.: Universal polarization switching behavior of disordered ferroelectrics. Adv. Funct. Mater. 22, 2058 (2012).Google Scholar
54.Mulaosmanovic, H., Ocker, J., Müller, S., Schroeder, U., Müller, J., Polakowski, P., Flachowsky, S., van Bentum, R., Mikolajick, T., and Slesazeck, S.: Switching kinetics in nanoscale hafnium oxide based ferroelectric field-effect transistors. ACS Appl. Mater. Interfaces 9, 3792 (2017).Google Scholar
55.Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N.Y., Stephenson, G.B., Stolitchnov, I., Taganstev, A.K., Taylor, D.V., Yamada, T., and Streiffer, S.: Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 106, 051606 (2006).Google Scholar
56.Pinnow, C.-U. and Mikolajick, T.: Material aspects in emerging nonvolatile memories. J. Electrochem. Soc. 151, K13K19 (2004).Google Scholar
57.Park, M.H., Kim, H.J., Kim, Y.J., Lee, W., Kim, H.K., and Hwang, C.S.: Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes. Appl. Phys. Lett. 102, 112914 (2013).Google Scholar
58.Hartner, W., Bosk, P., Schindler, G., Bachhofer, H., Mört, M., Wendt, H., Mikolajick, T., Dehm, C., Schroeder, H., and Waser, R.: SrBi2Ta2O9 ferroelectric thin film capacitors: degradation in a hydrogen ambient. Appl. Phys. A 77, 571 (2003).Google Scholar
59.Aggarwal, S., Perusse, S.R., Tipton, C.W., Ramesh, R., Drew, H.D., Venkatesan, T., Romero, D.B., Podobedov, V.B., and Weber, A.: Effect of hydrogen on Pb(Zr,Ti)O3-based ferroelectric capacitors. Appl. Phys. Lett. 73, 1973 (1998).Google Scholar
60.Rodriguez, J., Remack, K., Gertas, J., Wang, L., Zhou, C., Boku, K., Rodriguez-Latorre, J., Udayakumar, K.R., Summerfelt, S., and Moise, T.: Reliability of ferroelectric random access memory embedded within 130 nm CMOS. in Reliability Physics Symposium (IRPS), 2010 IEEE International 750758 (2010). DOI: 10.1109/IRPS.2010.5488738.Google Scholar
61.Florent, K., Lavizzari, S., Di Piazza, L., Popovici, M., Duan, J., Groeseneken, G., and Van Houdt, J.: Reliability study of ferroelectric Al:HfO2 thin films for DRAM and NAND applications. IEEE Trans. Electron Devices 64, 4091 (2017).Google Scholar
62.Pešić, M., Schroeder, U., Slesazeck, S., and Mikolajick, T.: Comparative study of reliability of ferroelectric and anti-ferroelectric memories. in IEEE Transactions on Device and Materials Reliability 18, 154162 (2018).Google Scholar
63.Lo, V.C.: Modeling the role of oxygen vacancy on ferroelectric properties in thin films. J. Appl. Phys. 92, 67786786 (2002).Google Scholar
64.Fengler, F.P.G., Hoffmann, M., Slesazeck, S., Mikolajick, T., and Schroeder, U.: On the relationship between field cycling and imprint in ferroelectric Hf0.5Zr0.5O2. J. Appl. Phys. 123, 20 (2018).Google Scholar
65.Zhou, D., Xu, J., Li, Q., Guan, Y., Cao, F., Dong, X., Müller, J., Schenk, T., and Schröder, U.: Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Appl. Phys. Lett. 103, 192904 (2013).Google Scholar
66.Fengler, F.P.G., Pešić, M., Starschich, S., Schneller, T., Künneth, C., Böttger, U., Mulaosmanovic, H., Schenk, T., Park, M.H., Nigon, R., Muralt, P., Mikolajick, T., and Schroeder, U.: Domain pinning: comparison of hafnia and PZT based ferroelectrics. Adv. Electron. Mater. 3, 1600505 (2017).Google Scholar
67.Genenko, Y.A., Glaum, J., Hoffmann, M.J., and Albe, K.: Mechanisms of aging and fatigue in ferroelectrics. Mater. Sci. Eng. B 192, 52 (2015).Google Scholar
68.Pešić, M., Fengler, F.P.G., Larcher, L., Padovani, A., Schenk, T., Grimley, E. D, Sang, X., LeBeau, J. M, Slesazeck, S., Schroeder, U., and Mikolajick, T.: Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors. Adv. Funct. Mater. 26, 4601 (2016).Google Scholar
69.Schenk, T., Yurchuk, E., Mueller, S., Schroeder, U., Starschich, S., Böttger, U., and Mikolajick, T.: About the deformation of ferroelectric hysteresis. Appl. Phys. Rev. 1, 041103 (2014).Google Scholar
70.Schenk, T., Hoffmann, M., Ocker, J., Pešic, M., Mikolajick, T., and Schroeder, U.: Complex internal bias fields in ferroelectric hafnium oxide. ACS Appl. Mater. Interfaces 7, 20224 (2015).Google Scholar
71.Lomenzo, P.D., Takmeel, Q., Zhou, C., Fancher, C.M., Lambers, E., Rudawski, N.G., Jones, J.L., Moghaddam, S., and Nishida, T.: TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films. J. Appl. Phys. 117, 134105 (2015).Google Scholar
72.Kim, H.J., Park, M.H., Kim, Y.J., Lee, Y.H., Moon, T., Kim, K.D., Hyun, S.D., and Hwang, C.S.: A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement. Nanoscale 8, 1383 (2016).Google Scholar
73.Park, M.H., Kim, H.J., Kim, Y.J., Lee, Y.H., Moon, T., Kim, K.D., Hyun, S.D., Fengler, F., Schroeder, U., and Hwang, C.S.: Effect of Zr content on the wake-up effect in Hf1–xZrxO2 films. ACS Appl. Mater. Interfaces 8, 15466 (2016).Google Scholar
74.Grimley, E.D., Schenk, T., Sang, X., Pešić, M., Schroeder, U., Mikolajick, T., and LeBeau, J.M.: Structural changes underlying field cycling phenomena in ferroelectric HfO2 thin films. Adv. Electron. Mater. 2, 1600173 (2016).Google Scholar
75.Shimizu, T., Yokouchi, T., Oikawa, T., Shiraishi, T., Kiguchi, T., Akama, A., Konno, T.J., Gruverman, A., and Funakubo, H.: Contribution of oxygen vacancies to the ferroelectric behavior of Hf0.5Zr0.5O2 thin films. Appl. Phys. Lett. 106, 112904 (2015).Google Scholar
76.Hoffmann, M., Schroeder, U., Schenk, T., Shimizu, T., Funakubo, H., Sakata, O., Pohl, D., Drescher, M., Adelmann, C., Materlik, R., Kersch, A., and Mikolajick, T.: Stabilizing the ferroelectric phase in doped hafnium oxide. J. Appl. Phys. 118, 072006 (2015).Google Scholar
77.Starschich, S., Menzel, S., and Böttger, U.: Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide. Appl. Phys. Lett. 108, 032903 (2016).Google Scholar
78.Starschich, S., Menzel, S., and Böttger, U.: Pulse wake-up and breakdown investigation of ferroelectric yttrium doped HfO2. J. Appl. Phys. 121, 154102 (2017).Google Scholar
79.Max, B., Pešić, M., Slesazeck, S., and Mikolajick, T.: Interplay between ferroelectric and resistive switching in doped crystalline HfO2. J. Appl. Phys. 123, 134102 (2018).Google Scholar
80.Schönhals, A., Rosário, C.M.M., Hoffmann-Eifert, S., Waser, R., Menzel, S., and Wouters, D.J.: Role of the electrode material on the RESET limitation in oxide ReRAM devices. Adv. Electron. Mater. 4, 1700243 (2018).Google Scholar
81.Park, M.H., Kim, H.J., Kim, Y.J., Lee, W., Moon, T., and Hwang, C.S.: Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Appl. Phys. Lett. 102, 242905 (2013).Google Scholar
82.Lomenzo, P.D., Takmeel, Q., Moghaddam, S., and Nishida, T.: Annealing behavior of ferroelectric Si-doped HfO2 thin films. Thin Solid Films 615, 139 (2016).Google Scholar
83.Richter, C., Schenk, T., Park, M.H., Tscharntke, F.A., Grimley, E.D., LeBeau, J.M., Zhou, C., Fancher, C.M., Jones, J.L., Mikolajick, T., and Schroeder, U.: Si doped hafnium oxide—a “fragile” ferroelectric system. Adv. Electron. Mater. 3, 1700131 (2017).Google Scholar
84.Schroeder, U., Richter, C., Park, M.H., Schenk, T., Pešić, M., Hoffmann, M., Fengler, F.P.G., Pohl, D., Rellinghaus, B., Zhou, C., Chung, C.C., Jones, J.L., and Mikolajick, T.: Lanthanum-doped hafnium oxide: a robust ferroelectric material. Inorg. Chem. 57, 2752 (2018).Google Scholar
85.Park, M.H., Schenk, T., Hwang, C.S., and Schroeder, U.: Electrodes for fluorite-type ferroelectrics, Ferroelectricity in Hafnium and Zirconium oxide: materials and devices (Elsevier). In preparation.Google Scholar
86.Chernikova, A.G., Kozodaev, M.G., Negrov, D.V., Korostylev, E.V., Park, M.H., Schroeder, U., Hwang, C.S., and Markeev, A.M.: Improved ferroelectric switching endurance of La-doped Hf0.5Zr0.5O2 thin films. ACS Appl. Mater. Interfaces 10, 2701 (2018).Google Scholar
87.Park, M.H., Kim, H.J., Kim, Y.J., Jeon, W., Moon, T., and Hwang, C.S.: Ferroelectric properties and switching endurance of Hf0.5Zr0.5O2 films on tin bottom and tin or RuO2 top electrodes. Phys. Status Solidi RRL 8, 532 (2014).Google Scholar
88.Clima, S., Wouters, D.J., Adelmann, C., Schenk, T., Schroeder, U., Jurczak, M., and Pourtois, G.: Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO2: a first principles insight. Appl. Phys. Lett. 104, 092906 (2014).Google Scholar
89.Migita, S., Ota, H., Yamada, H., Sawa, A., and Toriumi, A.: Thickness-independent behavior of coercive field in HfO2-based ferroelectrics. IEEE Electron Devices Technology and Manufacturing Conference Proceedings of Technical Papers.Google Scholar
90.Wang, L.-M.: Relationship between Intrinsic Breakdown Field and Bandgap of Materials. 25th International Conference on Microelectronics. doi: 10.1109/ICMEL.2006.1651032.Google Scholar
91.Lu, W., Li, H., and Cao, W.: Landau expansion parameters for BaTiO3. J. Appl. Phys. 114, 224106 (2013).Google Scholar
92.Huan, T.D., Sharma, V., Rossetti, G.A. Jr., and Ramprasad, R.: Pathways towards ferroelectricity in hafnia. Phys. Rev. B 90, 064111 (2014).Google Scholar
93.Barabash, S.V., Pramanik, D., Zhai, Y., Magyari-Kope, B., and Nishi, Y.: Ferroelectric switching pathways and energetics in (Hf,Zr)O2. ECS Trans. 75, 107 (2017).Google Scholar
94.McKenna, K. and Shluger, A.: The interaction of oxygen vacancies with grain boundaries in monoclinic HfO2. Appl. Phys. Lett. 95, 222111 (2009).Google Scholar
95.Park, M.H., Kim, H.J., Lee, Y.H., Kim, Y.J., Moon, T., Kim, K.D., Hyun, S.D., and Hwang, C.S.: Two-step polarization switching mediated by a nonpolar intermediate phase in Hf0.4Zr0.6O2 thin films. Nanoscale 8, 13898 (2016).Google Scholar
96.Mittmann, T., Fengler, F.P.G., Richter, C., Park, M.H., Mikolajick, T., and Schroeder, U.: Optimizing process conditions for improved Hf1−xZrxO2 ferroelectric capacitor performance. Microelectron. Engineer. 178, 48 (2017).Google Scholar
97.Kim, K.D., Park, M.H., Kim, H.J., Kim, Y.J., Moon, T., Lee, Y.H., Hyun, S.D., Gwon, T., and Hwang, C.S.: Ferroelectricity in undoped-HfO2 thin films induced by deposition temperature control during atomic layer deposition. J. Mater. Chem. C 4, 6864 (2016).Google Scholar
98.Lee, Y.H., Kim, H.J., Moon, T., Kim, K.D., Hyun, S.D., Park, H.W., Lee, Y.B., Park, M.H., and Hwang, C.S.: Preparation and characterization of ferroelectric Hf0.5Zr0.5O2 thin films grown by reactive sputtering. Nanotechnology 28, 305703 (2017)Google Scholar
99.Kim, H.J., Park, M.H., Kim, Y.J., Lee, Y.H., Jeon, W., Gwon, T., Moon, T., Kim, K.D., and Hwang, C.S.: Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer. Appl. Phys. Lett. 105, 192903 (2014).Google Scholar
100.Grimley, E.D., Schenk, T., Mikolajick, T., Schroeder, U., and LeBeau, J.M.: Atomic structure of domain and interphase boundaries in ferroelectric HfO2. Adv. Mater. Interfaces 5, 1701258 (2018).Google Scholar
101.Mueller, S., Mueller, J., Singh, A., Riedel, S., Sundqvist, J., Schroeder, U., and Mikolajick, T.: Incipient ferroelectricity in Al-doped HfO2 thin films. Adv. Funct. Mater. 22, 2412 (2012).Google Scholar
102.Pešić, M., Li, T., Di Lecce, V., Hoffmann, M., Materano, M., Richter, C., Max, B., Slesazeck, S., Schroeder, U., Larcher, L., and Mikolajick, T.: Built-in bias generation in anti-ferroelectric stacks: methods and device applications. IEEE Journal of the Electron Devices Society. doi: 10.1109/JEDS.2018.2825360.Google Scholar
103.Pešić, M., Hoffmann, M., Richter, C., Mikolajick, T., and Schroeder, U.: Nonvolatile random access memory and energy storage based on antiferroelectric like hysteresis in ZrO2. Adv. Funct. Mater. 26, 7486 (2016).Google Scholar
104.Fengler, F.P.G., Nigon, R., Muralt, P., Grimley, E.D., Sang, X., Sessi, V., Hentschel, R., LeBeau, J.M., Mikolajick, T., and Schroeder, U.: Analysis of performance instabilities of hafnia-based ferroelectrics using modulus spectroscopy and thermally stimulated depolarization currents. Adv. Electron. Mater. 4, 1700547 (2018).Google Scholar
105.Polakowski, P. and Mueller, J.: Ferroelectricity in undoped hafnium oxide. Appl. Phys. Lett. 106, 232905 (2015).Google Scholar
106.Mueller, S., Summerfelt, S.R., Muller, J., Schroeder, U., and Mikolajick, T.: Ten-nanometer ferroelectric Si:HfO2 films for next-generation FRAM capacitors. Electron Device Lett. 33, 1300 (2012).Google Scholar
107.Mueller, S., Muller, J., Schroeder, U., and Mikolajick, T.: Reliability characteristics of ferroelectric Si:HfO2 thin films for memory applications. IEEE Trans. Device Mater. Rel. 13, 93 (2013).Google Scholar
108.Mueller, S., Muller, J., Hoffmann, R., Yurchuk, E., Schlosser, T., Boschke, R., Paul, J., Goldbach, M., Herrmann, T., Zaka, A., Schroder, U., and Mikolajick, T.: From MFM capacitors toward ferroelectric transistors: endurance and disturb characteristics of HfO2-based FeFET devices. IEEE Trans. Electron Devices 60, 4199 (2013).Google Scholar
109.Lomenzo, P.D., Takmeel, Q., Zhou, C., Chung, C.-C., Moghaddam, S., Jones, J.L., and Nishida, T.: Mixed Al and Si doping in ferroelectric HfO2 thin films. Appl. Phys. Lett. 107, 242903 (2015).Google Scholar
110.Park, M.H., Kim, H.J., Kim, Y.J., Moon, T., Kim, K.D., Lee, Y.H., Hyun, S.D., and Hwang, C.S.: Study on the internal field and conduction mechanism of atomic layer deposited ferroelectric Hf0.5Zr0.5O2 thin films. J. Mater. Chem. C 3, 6291 (2015).Google Scholar
111.Yurchuk, E., Mueller, S., Martin, D., Slesazeck, S., Schroeder, U., and Mikolajick, T.: Origin of the endurance degradation in the novel HfO2-based 1T ferroelectric non-volatile memories, 2014 IEEE International Reliability Physics Symposium, Waikoloa, HI, 2014, pp. 2E.5.1–2E.5.5. doi: 10.1109/IRPS.2014.686060.Google Scholar