Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T12:35:09.976Z Has data issue: false hasContentIssue false

Reversible dislocation motion and microcracking in plastically anisotropic solids under cyclic spherical nanoindentation

Published online by Cambridge University Press:  30 September 2013

B. Anasori*
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
M.W. Barsoum
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
*
Address all correspondence to B. Anasori at[email protected]
Get access

Abstract

Recently, fully reversible dislocation motion was postulated to result in hysteretic nanoindentation load–displacement loops in plastically anisotropic solids. Since microcracking can also result in hysteretic loops, here we define a new parameter, reversible displacement (RD) that can differentiate between the two. For C-plane LiTaO3 surfaces and five other plastically anisotropic solids, the RD values either increase initially or remain constant with cycling. In contradistinction, for glass and A-plane ZnO surfaces, where energy dissipation is presumably due to microcracking or irreversible dislocation pileups, respectively, the RD values decreased continually with cycling.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Frank, F.C. and Stroh, A.N.: On the theory of kinking. Proc. Phys. Soc. 65, 811821 (1952).Google Scholar
2.Barsoum, M.W., Murugaiah, A., Kalidindi, S.R., and Zhen, T.: Kinking nonlinear elastic solids, nanoindentations, and geology. Phys. Rev. Lett. 92, 255508 (2004).CrossRefGoogle ScholarPubMed
3.Zhou, A.G., Barsoum, M.W., Basu, S., Kalidindi, S.R., and El-Raghy, T.: Incipient and regular kink bands in fully dense and 10 vol.% porous Ti2AlC. Acta Mater. 54, 16311639 (2006).Google Scholar
4.Barsoum, M.W., Zhen, T., Kalidindi, S.R., Radovic, M., and Murugaiah, A.: Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa. Nat. Mater. 2, 107111 (2003).CrossRefGoogle ScholarPubMed
5.Basu, S., Barsoum, M.W.: Deformation micromechanisms of ZnO single crystals as determined from spherical nanoindentation stress–strain curves. J. Mater. Res. 22, 24702477 (2007).CrossRefGoogle Scholar
6.Buchs, R., Basu, S., Elshrief, O.A., Coward, R., and Barsoum, M.W.: Spherical nanoindentation and Vickers microhardness study of the deformation of poled BaTiO3 single crystals. J. Appl. Phys. 105, 093540 (2009).Google Scholar
7.Basu, S., Barsoum, M.W., and Kalidindi, S.R.: Sapphire: a kinking nonlinear elastic solid. J. Appl. Phys. 99, 063501 (2006).CrossRefGoogle Scholar
8.Basu, S., Zhou, A.G., and Barsoum, M.W.: Reversible dislocation motion under contact loading in LiNbO3 single crystal. J. Mater. Res. 23, 13341338 (2008).CrossRefGoogle Scholar
9.Anasori, B., Sickafus, K.E., Usov, I.O., and Barsoum, M.W.: Spherical nanoindentation study of the deformation micromechanisms of LiTaO3 single crystals J. Appl. Phys. 110, 023516 (2011).Google Scholar
10.Zhou, A.G., Basu, S., and Barsoum, M.W.: Kinking nonlinear elasticity, damping and microyielding of hexagonal close-packed metals. Acta Mater. 56, 6067 (2008).CrossRefGoogle Scholar
11.Zhou, A.G., Brown, D., Vogel, S., Yeheskel, O., and Barsoum, M.W.: On the kinking nonlinear elastic deformation of cobalt. Mater. Sci. Eng. A 527, 46644673 (2010).Google Scholar
12.Barsoum, M.W., Murugaiah, A., Kalidindi, S.R., Zhen, T., and Gogotsi, Y.: Kink bands, nonlinear elasticity and nanoindentations in graphite. Carbon 42, 14351445 (2004).Google Scholar
13.Basu, S. and Barsoum, M.W.: On spherical nanoindentations, kinking nonlinear elasticity of mica single crystals and their geological implications. J. Struct. Geol. 31, 791801 (2009).Google Scholar
14.Richter, A., Wolf, B., Nowicki, M., Smith, R., Usov, I.O., Valdez, J.A., and Sickafus, K.: Multi-cycling nanoindentation in MgO single crystals before and after ion irradiation. J. Phys. D, Appl. Phys. 39, 33423349 (2006).CrossRefGoogle Scholar
15.Oliver, W.C. and Pharr, G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 15641583 (1992).Google Scholar
16.Coleman, V.A., Bradby, J.E., Jagadish, C., and Phillips, M.R.: A comparison of the mechanical properties and the impact of contact induced damage in a- and c- Axis ZnO single crystals. MRS Online Proc. Libr. 957, 0957-K07–17 (2006).CrossRefGoogle Scholar
17.Saraswati, T., Sritharan, T., Mhaisalkar, S., Breach, C.D., and Wulff, F.: Cyclic loading as an extended nanoindentation technique. Mater. Sci. Eng. A 423, 1418 (2006).CrossRefGoogle Scholar
Supplementary material: PDF

Anasori Supplementary Material

Supplementary Materials

Download Anasori Supplementary Material(PDF)
PDF 14.3 MB