Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T10:50:50.987Z Has data issue: false hasContentIssue false

Revealing the deformation twinning nucleation mechanism of BCC HEAs

Published online by Cambridge University Press:  11 February 2019

Zachary H. Aitken*
Affiliation:
Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
Yong-Wei Zhang
Affiliation:
Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
*
Address all correspondence to Zachary H. Aitken at [email protected]
Get access

Abstract

Deformation twinning has been frequently observed in body-centered cubic (BCC) high entropy alloys (HEAs), however, the underlying mechanism remains elusive. We perform molecular dynamics simulations on a representative BCC HEA nanopillar under high-symmetry compression, describe atomic details of deformation twinning, and propose a mechanism of twin nucleation from the surface. We find that twinned regions are formed by partial dislocations and that chemical heterogeneity can reduce local fault energy and promote stacking faults and twins. These results help to understand the propensity for stacking fault formation and twinning in HEAs and may guide the design of novel HEAs through control of active twinning mechanisms.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Senkov, O.N., Miracle, D.B., Chaput, K.J., and Couzinie, J.-P.: Development and exploration of refractory high entropy alloys—A review. J. Mater. Res. 33(19), 3092 (2018).10.1557/jmr.2018.153Google Scholar
2.Senkov, O.N., Scott, J.M., Senkova, S.V., Meisenkothen, F., Miracle, D.B., and Woodward, C.F.: Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 47(9), 4062 (2012).Google Scholar
3.Tsai, C.-W., Chen, Y.-L., Tsai, M.-H., Yeh, J.-W., Shun, T.-T., and Chen, S.-K.: Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi. J. Alloys Compd. 486(1–2), 427 (2009).10.1016/j.jallcom.2009.06.182Google Scholar
4.Senkov, O.N., Wilks, G.B., Scott, J.M., and Miracle, D.B.: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19(5), 698 (2011).Google Scholar
5.Senkov, O.N., Senkova, S.V., Miracle, D.B., and Woodward, C.: Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Mater. Sci. Eng. A 565, 51 (2013).Google Scholar
6.Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61(October 2013), 1 (2014).Google Scholar
7.Senkov, O.N., Scott, J.M., Senkova, S.V., Miracle, D.B., and Woodward, C.F.: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 509(20), 6043 (2011).10.1016/j.jallcom.2011.02.171Google Scholar
8.Han, Z.D., Chen, N., Zhao, S.F., Fan, L.W., Yang, G.N., Shao, Y., and Yao, K.F.: Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics 84, 153 (2017).10.1016/j.intermet.2017.01.007Google Scholar
9.Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science (80-.). 345(6201), 1153 (2014).Google Scholar
10.Deng, Y., Tasan, C.C., Pradeep, K.G., Springer, H., Kostka, A., and Raabe, D.: Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 94, 124 (2015).Google Scholar
11.Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61(15), 5743 (2013).Google Scholar
12.Smith, T.M., Hooshmand, M.S., Esser, B.D., Otto, F., McComb, D.W., George, E.P., Ghazisaeidi, M., and Mills, M.J.: Atomic-scale characterization and modeling of 60° dislocations in a high-entropy alloy. Acta Mater. 110, 352 (2016).10.1016/j.actamat.2016.03.045Google Scholar
13.Laplanche, G., Kostka, A., Reinhart, C., Hunfeld, J., Eggeler, G., and George, E.P.: Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater. 128, 292 (2017).10.1016/j.actamat.2017.02.036Google Scholar
14.Okamoto, N.L., Fujimoto, S., Kambara, Y., Kawamura, M., Chen, Z.M.T., Matsunoshita, H., Tanaka, K., Inui, H., and George, E.P.: Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy. Sci. Rep. 6(1), 35863 (2016).Google Scholar
15.Kireeva, I., Chumlyakov, Y., Pobedennaya, Z., and Vyrodova, A.: Temperature dependence of mechanical properties in $[\bar{1}11]$-oriented single crystals of CoCrFeNiAl0.3 high entropy alloy. AIP Conf. Proc. 1909, 020083 (2017).Google Scholar
16.Kireeva, I.V., Chumlyakov, Y.I., Pobedennaya, Z.V., Vyrodova, A.V., Kuksgauzen, I.V., Poklonov, V.V., and Kuksgauzen, D.A.: The orientation dependence of critical shear stresses in Al0.3CoCrFeNi high-entropy alloy single crystals. Tech. Phys. Lett. 43(7), 615 (2017).Google Scholar
17.Kireeva, I.V., Chumlyakov, Y.I., Pobedennaya, Z.V., Kuksgausen, I.V., and Karaman, I.: Orientation dependence of twinning in single crystalline CoCrFeMnNi high-entropy alloy. Mater. Sci. Eng. A 705(August), 176 (2017).Google Scholar
18.Laplanche, G., Kostka, A., Horst, O.M., Eggeler, G., and George, E.P.: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 118, 152 (2016).10.1016/j.actamat.2016.07.038Google Scholar
19.Qin, B. and Bhadeshia, H.K.D.H.: Plastic strain due to twinning in austenitic TWIP steels. Mater. Sci. Technol. 24(8), 969 (2008).10.1179/174328408X263688Google Scholar
20.Grässel, O. and Frommeyer, G.: Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–AI steels. Mater. Sci. Technol. 14(12), 1213 (1998).Google Scholar
21.Bouaziz, O. and Guelton, N.: Modelling of TWIP effect on work-hardening. Mater. Sci. Eng. A 319–321, 246 (2001).Google Scholar
22.Wang, J., Zeng, Z., Weinberger, C.R., Zhang, Z., Zhu, T., and Mao, S.X.: In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten. Nat. Mater. 14(6), 594 (2015).Google Scholar
23.Zimmerman, J.A., Gao, H., and Abraham, F.F.: Generalized stacking fault energies for embedded atom FCC metals. Model. Simul. Mater. Sci. Eng. 8(2), 103 (2000).Google Scholar
24.Zhou, X.W., Johnson, R.A., and Wadley, H.N.G.: Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 69(14), 144113 (2004).Google Scholar
25.Rao, S.I., Woodward, C., Parthasarathy, T.A., and Senkov, O.: Atomistic simulations of dislocation behavior in a model FCC multicomponent concentrated solid solution alloy. Acta Mater. 134, 188 (2017).Google Scholar
26.Plimpton, S.: Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comp. Phys. 117(1), 1 (1995).10.1006/jcph.1995.1039Google Scholar
27.Stukowski, A.: Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).10.1088/0965-0393/18/1/015012Google Scholar
28.Liu, S. and Wei, Y.: The Gaussian distribution of lattice size and atomic level heterogeneity in high entropy alloys. Extrem. Mech. Lett. 11, 84 (2017).10.1016/j.eml.2016.10.007Google Scholar
29.Hirth, J.P. and Lothe, J.: Theory of Dislocations, 2nd ed. (John Wiley & Sons, Inc., New York, 1982).Google Scholar
30.Christian, J. and Mahajan, S.: Deformation twinning. Prog. Mater. Sci. 39, 1 (1995).10.1016/0079-6425(94)00007-7Google Scholar
31.Lagerlöf, K.P.D.: On deformation twinning in b.c.c. metals. Acta Metall. Mater. 41(7), 2143 (1993).10.1016/0956-7151(93)90384-5Google Scholar
32.Vítek, V.: Multilayer stacking faults and twins on {211} planes in B.C.C. metals. Scr. Metall. 4(9), 725 (1970).Google Scholar
33.Van Swygenhoven, H., Derlet, P.M., and Frøseth, A.G.: Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3(6), 399 (2004).10.1038/nmat1136Google Scholar
34.Asaro, R.J. and Suresh, S.: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53(12), 3369 (2005).Google Scholar
35.Nöhring, W.G. and Curtin, W.A.: Dislocation cross-slip in fcc solid solution alloys. Acta Mater. 128, 135 (2017).Google Scholar
36.Tadmor, E.B. and Hai, S.: A Peierls criterion for the onset of deformation twinning at a crack tip. J. Mech. Phys. Solids 51(5), 765 (2003).10.1016/S0022-5096(03)00005-XGoogle Scholar