Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T07:36:46.110Z Has data issue: false hasContentIssue false

Rapid synthesis of high-performance thermoelectric materials directly from natural mineral tetrahedrite

Published online by Cambridge University Press:  26 July 2013

Xu Lu
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
Donald T. Morelli*
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824
*
Address all correspondence to Donald T. Morelli at[email protected]
Get access

Abstract

Tetrahedrite-structure compounds, of general composition Cu12−xZnxSb4S13, are an earth-abundant alternative to PbTe for thermoelectric power generation applications in the intermediate high-temperature range (300–400°C). Tetrahedrites can be synthesized in the laboratory using a multi-step process involving long annealing times. However, this compound also exists in natural mineral form, and, in fact, is one of the most abundant copper-bearing minerals in the world. We show here that by simply mixing natural mineral tetrahedrite with pure elements through high-energy ball milling without any further heat treatment, we can successfully obtain material with figure of merit near unity at 723 K.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Snyder, G.J. and Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).Google Scholar
2Biswas, K., He, J., Blum, I.D., Wu, C-I., Hogan, T.P., Seidman, D.N., Dravid, V.P., and Kanatzidis, M.G.: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414 (2012).Google Scholar
3Pei, Y., Shi, X., LaLonde, A., Wang, H., Chen, L., and Snyder, G.J.: Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66 (2011).Google Scholar
4Bilc, D., Mahanti, S.D., Quarez, E., Hsu, K., Pcionek, R., and Kanatzidis, M.G.: Resonant states in the electronic structure of the high performance thermoelectrics AgPbmSbTe2+m: the role of Ag–Sb microstructures. Phys. Rev. Lett. 93, 146403 (2004).CrossRefGoogle ScholarPubMed
5Heremans, J.P., Thrush, C.M., and Morelli, D.T.: Thermopower enhancement in lead telluride nanostructures. Phys. Rev. B 70, 115334 (2004).Google Scholar
6Morelli, D.T., Jovovic, V., and Heremans, J.P.: Intrinsically minimum thermal conductivity in cubic I–V–VI2 semiconductors. Phys. Rev. Lett. 101, 035901 (2008).Google Scholar
7Pfitzner, A., Evain, M., and Petricek, V.: Cu12Sb4S13: a temperature-dependent structure investigation. Acta Cryst. B53, 337 (1997).Google Scholar
8Johnson, M.L. and Jeanloz, R.: A Brillouin-zone model for compositional variation in tetrahedrite. Am. Mineral. 68, 220 (1983).Google Scholar
9Skoug, E.J. and Morelli, D.T.: Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds. Phys. Rev. Lett. 107, 235901 (2011).CrossRefGoogle ScholarPubMed
10Nielson, M.D., Ozolins, V., and Heremans, J.P.: Lone pair electrons minimize lattice thermal conductivity. Energy Environ. Sci. 6, 570 (2013).Google Scholar
11Lu, X., Morelli, D.T., Xia, Y., Zhou, F., Ozolins, V., Chi, H., Zhou, X., and Uher, C.: High performance thermoelectricity in earth-abundant compound based natural mineral tetrahedrites. Adv. Energy Mater. 3, 342 (2013).Google Scholar
12Lu, X. and Morelli, D.T.: Natural mineral tetrahedrite as a direct source of the thermoelectric materials. Phys. Chem. Chem. Phys. 15, 5762 (2013).Google Scholar
13Joshi, G., Lee, H., Lan, Y., Wang, X., Zhu, G., Wang, D., Gould, R.W., Cuff, D.C., Tang, M.Y., Dresselhaus, M.S., Chen, G., and Ren, Z.: Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 8, 4670 (2008).Google Scholar
14Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., and Ren, Z.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).CrossRefGoogle ScholarPubMed
15Li, J., Sui, J., Pei, Y., Barretean, C., Berardan, D., Dragoe, N., Cai, W., He, J., and Zhao, L.: A high thermoelectric figure of merit >1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ. Sci. 5, 8543 (2012).Google Scholar
16Zevalkink, A., Toberer, E.S., Zeier, W.G., Flage-Larsen, E., and Snyder, G.J.: Ca3AlSb3: an inexpensive, non-toxic thermoelectric material for waste heat recovery. Energy Environ. Sci. 4, 510 (2011).Google Scholar
17Jeanloz, R. and Johnson, M.L.: A note on the bonding, optical spectrum and composition of tetrahedrite. Phys. Chem. Miner. 11, 52 (1984).CrossRefGoogle Scholar
18Bux, S.K., Blair, R.G., Gogna, P.K., Lee, H., Chen, G., Dresselhaus, M.S., Kaner, R.B., and Fleurial, J.-P.: Nanostructured bulk Silicon as an effective thermoelectric material. Adv. Funct. Mater. 19, 2445 (2009).Google Scholar
Supplementary material: File

Lu supplementary material

Lu supplementary material

Download Lu supplementary material(File)
File 319 KB