Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-30T10:30:51.723Z Has data issue: false hasContentIssue false

Polypropylene films modified by grafting-from of ethylene glycol dimethacrylate/glycidyl methacrylate using γ-rays and antimicrobial biofunctionalization by Schiff bases

Published online by Cambridge University Press:  29 January 2018

G.G. Flores-Rojas*
Affiliation:
Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México CDMX 04510, México Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
F. López-Saucedo
Affiliation:
Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México CDMX 04510, México
J.E. López-Barriguete
Affiliation:
Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México CDMX 04510, México Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
T. Isoshima
Affiliation:
Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
M. Luna-Straffon
Affiliation:
Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México CDMX 04510, México
E. Bucio*
Affiliation:
Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México CDMX 04510, México
*
Address all correspondence to G.G. Flores-Rojas and E. Bucio at [email protected], [email protected]
Address all correspondence to G.G. Flores-Rojas and E. Bucio at [email protected], [email protected]
Get access

Abstract

The goal of this work was to provide antimicrobial activity to polypropylene by covalent immobilization of lysozyme. The first step was the grafting of ethylene glycol dimethacrylate and glycidyl methacrylate through “grafting-from” method by means of γ-rays. Then those chemical groups were activated to allow the immobilization of lysozyme by Schiff bases. The activity of lysozyme showed an improvement by the remaining double bonds from the grafting. Finally, the presence of lysozyme was confirmed by the hydrolysis of Micrococcus lysodeikticus at different temperatures, pH values, and cycles. The new materials were characterized by infrared spectroscopy, thermal analysis, contact angle, and by the surface morphology.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cunningham, F.E., Proctor, V.A., and Goetsch, S.J.: Egg-white lysozyme as a food preservative: an overview. Worlds Poult. Sci. J. 47, 141 (1991).CrossRefGoogle Scholar
2. Muñoz-Muñoz, F., Ruiz, J.C., Alvarez-Lorenzo, C., Concheiro, A., and Bucio, E.: Novel interpenetrating smart polymer networks grafted onto polypropylene by gamma radiation for loading and delivery of vancomycin. Eur. Polym. J. 45, 1859 (2009).CrossRefGoogle Scholar
3. Oliani, W.L., Fernandes Parra, D., Pedroso Lima, L.F.C., Lincopan, N., and BenevoloLugao, A.J.: Development of a nanocomposite of polypropylene with biocide action from silver nanoparticles. Appl. Polym. Sci. 132, 42218 (2015).CrossRefGoogle Scholar
4. López-Saucedo, F., Flores-Rojas, G.G., Bucio, E., Alvarez-Lorenzo, C., Concheiro, A., and González-Antonio, O.: Achieving antimicrobial activity through poly(N-methylvinylimidazolium) iodide brushes on binary-grafted polypropylene suture threads. MRS Commun. 7, 938 (2017).CrossRefGoogle Scholar
5. Thevenot, P., Hu, W., and Tang, L.: Surface chemistry influence implant biocompatibility. Curr. Top. Med. Chem. 8, 270 (2008).Google ScholarPubMed
6. Caro, A., Humblot, V., Méthivier, C., Minier, M., Salmain, M., and Pradier, C.M.: Grafting of lysozyme and/or poly(ethylene glycol) to prevent biofilm growth on stainless steel surfaces. J. Phys. Chem. B 113, 2101 (2009).CrossRefGoogle ScholarPubMed
7. Neves-Petersen, M.T., Snabe, T., Klitgaard, S., Duroux, M., and Petersen, S.B.: Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces. Protein Sci. 15, 343 (2015).CrossRefGoogle Scholar
8. Guadarrama-Zempoalteca, Y., Díaz-Gómez, L., Meléndez-Ortiz, H.I., Concheiro, A., Alvarez-Lorenzo, C., and Bucio, E.: Lysozyme immobilization onto PVC catheters grafted with NVCL and HEMA for reduction of bacterial adhesion. Radiat. Phys. Chem. 126, 1 (2016).CrossRefGoogle Scholar
9. Masoom, M. and Townshend, A.: Simultaneous determination of sucrose and glucose in mixtures by flow injection analysis with immobilized enzymes. Anal. Chim. Acta 171, 185 (1985).CrossRefGoogle Scholar
10. Flores-Rojas, G.G., Pino-Ramos, V.H., López-Saucedo, F., Concheiro, A., Alvarez-Lorenzo, C., and Bucio, E.: Improved covalent immobilization of lysozyme on silicone rubber-films grafted with poly(ethylene glycol dimethacrylate-coglycidylmethacrylate). Eur. Polym. J. 95, 27 (2017).CrossRefGoogle Scholar
11. Flores-Rojas, G.G., Lijanova, I.V., Morales-Saavedra, O.G., Sanchez-Montes, K., and Martínez-García, M.: Synthesis and NLO behavior of oligo(phenylenevinylene)-porphyrin dendrimers. Dyes Pigments 96, 125 (2013).CrossRefGoogle Scholar
12. Flores-Rojas, G.G. and Bucio, E.: Radiation-grafting of ethylene glycol dimethacrylate (EGDMA) and glycidyl methacrylate (GMA) onto silicone rubber. Radiat. Phys. Chem. 127, 21 (2016).CrossRefGoogle Scholar
13. Fujiki, K., Tsubokawa, N., and Sone, Y.: Radical grafting carbon black. Graft polymerization of vinyl monomers initiated by azo groups introduced onto carbon black surface. Polym. J. 22, 661 (1990).CrossRefGoogle Scholar
14. Aliev, R., García, P., and Burillo, G.: Graft polymerization of acrylic acid onto polycarbonate by the preirradiation method. Radiat. Phys. Chem. 58, 299 (2000).CrossRefGoogle Scholar
15. Islas, L., Ruiz, J.C., Muñoz-Muñoz, F., Isoshima, T., and Burillo, G.: Surface characterization of poly(vinyl chloride) urinary catheters functionalized with acrylic acid and poly(ethylene glycol)methacrylate using gamma-radiation. Appl. Surf. Sci. 384, 135 (2016).CrossRefGoogle Scholar
16. Burillo, G., Bucio, E., Arenas, E., and Lopez, G.P.: Temperature and pH-sensitive swelling behavior of binary DMAEMA/4VP graft on poly(propylene) films. Macromol. Mater. Eng. 292, 214 (2007).CrossRefGoogle Scholar
17. Bucio, E., Burillo, G., Adem, E., and Coqueret, X.: Temperature sensitive behavior of poly(N-isopropylacrylamide) grafted onto electron beam-Irradiated poly(propylene). Macromol. Mater. Eng. 290, 745 (2005).CrossRefGoogle Scholar
18. Nava-Ortiz, C.A.B., Burillo, G., Bucio, E., and Alvarez-Lorenzo, C.: Modification of polyethylene films by radiation grafting of glycidyl methacrylate and immobilization of b-cyclodextrin. Radiat. Phys. Chem. 78, 19 (2009).CrossRefGoogle Scholar
19. Adali, T. and Yilmazm, E.: Synthesis, characterization and biocompatibility studies on chitosan-graft-poly(EGDMA). Carbohydr. Polym. 77, 136 (2009).CrossRefGoogle Scholar
20. Geurtsen, W.: Biocompatibility of resin-modified filling materials. Crit. Rev. Oral. Biol. Med. 11, 333 (2000).CrossRefGoogle ScholarPubMed
21. Pujari, N.S., Vaidya, B.K., Bagalkote, S., Ponrathnam, S., and Nene, S.: Poly(urethane methacrylate-co-glycidyl methacrylate)-supported-polypropylene biphasic membrane for lipase immobilization. J. Membr. Sci. 285, 395 (2006).CrossRefGoogle Scholar
22. Barrett, K.E.J.: Determination of rates of thermal decomposition of polymerization initiators with a differential scanning calorimeter. J. Appl. Polym. Sci. 11, 1617 (1967).CrossRefGoogle Scholar
23. Flores-Rojas, G.G., López-Saucedo, F., Bucio, E., and Isochima, T.: Covalent immobilization of lysozyme in silicone rubber modified by easy chemical grafting. MRS Commun. 7, 904 (2017).CrossRefGoogle Scholar
24. Remmele, R.L. and Stushnoff, C. Jr.: Low-temperature IR spectroscopy reveals four stages of water loss during lyophilization of hen egg white lysozyme. Biopolymers 34, 365 (1994).CrossRefGoogle Scholar
25. Yang, P.W., Mantsch, H.H., Arrondo, J.L.R., Saint-Girons, I., Guillou, Y., Cohen, G.N., and Barzu, O.: Fourier transform infrared investigation of the Escherichia coli methionine aporepressor. Biochem.-US 26, 2706 (1987).CrossRefGoogle ScholarPubMed
26. Careri, G. and Giansanti, A.: Lysozyme film hydration events: an IR and gravimetric study. Biopolymers 18, 1187 (1979).CrossRefGoogle ScholarPubMed
27. Moraes, L.G.P., Rocha, R.S.F., Menegazzo, L.M., Borges de Araújo, E., Yukimitu, K., and Moraes, J.C.S.: Infrared spectroscopy: a tool for determination of the degree of conversion in dental composites. J. Appl. Oral Sci. 16, 145 (2008).CrossRefGoogle ScholarPubMed
Supplementary material: File

Flores-Rojas et al. supplementary material

Flores-Rojas et al. supplementary material 1

Download Flores-Rojas et al. supplementary material(File)
File 249.6 KB