Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T07:49:53.814Z Has data issue: false hasContentIssue false

Polymer films of nanoscale thickness: linear chain and star-shaped macromolecular architectures

Published online by Cambridge University Press:  11 August 2015

Peter F. Green*
Affiliation:
Department of Materials Science and Engineering, Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
Emmanouil Glynos
Affiliation:
Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas, P.O. Box 1385, Heraklion, Crete GR 71110, Greece
Bradley Frieberg
Affiliation:
Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
*
Address all correspondence to Peter F. Green at[email protected]
Get access

Abstract

Applications of polymer thin films include functional coatings, flexible electronics, membranes and energy conversion. The physical properties of polymer films of nanoscale thicknesses typically differ from the bulk, due largely to entropic effects and to enthalpic interactions between the macromolecules and the external interfaces. Studies of the size-dependent physical properties of macromolecules have largely been devoted to linear chain polymers. In this Prospective, we review recent experiments and simulations that describe the structure and fascinating physical properties, from wetting to the glass transition, of star-shaped macromolecules. The properties of these molecules would render them more useful than their linear chain analogs, for some specific applications.

Type
Polymers/Soft Matter Prospective Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Keddie, J.L., Jones, R.A.L., and Cory, R.A.: Interface and surface effects on the glass-transition temperature in thin polymer films. Faraday Discuss. 98, 219 (1994).CrossRefGoogle Scholar
2.Keddie, J.L., Jones, R.A.L., and Cory, R.A.: Size-dependent depression of the glass transition temperature in polymer films. Europhys. Lett. 27, 59 (1994).Google Scholar
3.Forrest, J.A. and Dalnoki-Veress, K.: The glass transition in thin polymer films. Adv. Colloid Interface Sci. 94, 167 (2001).CrossRefGoogle Scholar
4.Yang, Z.H., Fujii, Y., Lee, F.K., Lam, C.H., and Tsui, O.K.C.: Glass transition dynamics and surface layer mobility in unentangled polystyrene films. Science 328, 1676 (2010).Google Scholar
5.Priestley, R.D., Ellison, C.J., Broadbelt, L.J., and Torkelson, J.M.: Structural relaxation of polymer glasses at surfaces, interfaces and in between. Science 309, 456 (2005).Google Scholar
6.Alcoutlabi, M. and Mckenna, G.B.: Effects of confinement on material behaviour at the nanometre size scale. J. Phys.: Condens. Matter 17, R461 (2005).Google Scholar
7.Kanaya, T.: Glass transition, dynamics and heterogeneity of polymer thin films preface, in Glass Transition, Dynamics and Heterogeneity of Polymer Thin Films, edited by Kanaya, T. (Springer-Verlag Berlin, Berlin, 2013) pp. V.Google Scholar
8.Baschnagel, J. and Varnik, F.: Computer simulations of supercooled polymer melts in the bulk and in-confined geometry. J. Phys.: Condens. Matter 17, R851 (2005).Google Scholar
9.Lipson, J.E.G. and Milner, S.T.: Percolation model of interfacial effects in polymeric glasses. Eur. Phys. J. B 72, 133 (2009).Google Scholar
10.Long, D. and Lequeux, F.: Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films. Eur. Phys. J. E 4, 371 (2001).CrossRefGoogle Scholar
11.Mccoy, J.D. and Curro, J.G.: Conjectures on the glass transition of polymers in confined geometries. J. Chem. Phys. 116, 9154 (2002).Google Scholar
12.Mittal, J., Shah, P., and Truskett, T.M.: Using energy landscapes to predict the properties of thin films. J. Phys. Chem. B 108, 19769 (2004).CrossRefGoogle Scholar
13.Stafford, C.M., Harrison, C., Beers, K.L., Karim, A., Amis, E.J., Vanlandingham, M.R., Kim, H.C., Volksen, W., Miller, R.D., and Simonyi, E.E.: A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 3, 545 (2004).Google Scholar
14.O'connell, P.A., Hutcheson, S.A., and Mckenna, G.B.: Creep behavior of ultra-thin polymer films. J. Polym. Sci. B: Polym. Phys. 46, 1952 (2008).Google Scholar
15.Mccaig, M.S. and Paul, D.R.: Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging Part I. Experimental observations. Polymer 41, 629 (2000).CrossRefGoogle Scholar
16.Mccaig, M.S., Paul, D.R., and Barlow, J.W.: Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging Part II. Mathematical model. Polymer 41, 639 (2000).Google Scholar
17.Huang, B.Y., Glynos, E., Frieberg, B., Yang, H.X., and Green, P.F.: Effect of thickness-dependent microstructure on the out-of-plane hole mobility in poly(3-Hexylthiophene) films. ACS Appl. Mater. Interfaces 4, 5204 (2012).CrossRefGoogle ScholarPubMed
18.Yang, H.X., Glynos, E., Huang, B.Y., and Green, P.F.: Out-of-plane carrier transport in conjugated polymer thin films: role of morphology. J. Phys. Chem. C 117, 9590 (2013).CrossRefGoogle Scholar
19.Dong, B.X., Huang, B.Y., Tan, A., and Green, P.F.: Nanoscale orientation effects on carrier transport in a low-band-gap polymer. J. Phys. Chem. C 118, 17490 (2014).CrossRefGoogle Scholar
20.Bank, M., Thies, C., and Leffingw, J: Thermally induced phase separation of polystyrene-poly(vinyl methyl-ether) mixtures. J. Polym. Sci. B: Polym. Phys. 10, 1097 (1972).Google Scholar
21.Coleman, M.M., Graf, J.F., and Painter, P.C.: Specific Interactions and the Miscibility of Polymer Blends (Technomic Publishing, Lancaster, PA, 1991).Google Scholar
22.Coleman, M.M. and Painter, P.C.: Hydrogen-bonded polymer blends. Prog. Polym. Sci. 20, 1 (1995).Google Scholar
23.Dudowicz, J. and Freed, K.F.: Effect of monomer structure and compressibility on the properties of multicomponent polymer blends and solutions. 1. Lattice cluster theory of compressible systems. Macromolecules 24, 5076 (1991).Google Scholar
24.Dudowicz, J. and Freed, K.F.: Effect of monomer structure and compressibility on the properties of multicomponent polymer blends and solutions3. Application to PS(D) PVME blends. Macromolecules 24, 5112 (1991).CrossRefGoogle Scholar
25.Coulon, G., Russell, T.P., Deline, V.R., and Green, P.F.: Surface-induced orientation of symmetric, Diblock copolymers—a secondary ion mass-spectrometry study. Macromolecules 22, 2581 (1989).Google Scholar
26.Shull, K.R.: Mean-field theory of block copolymers—bulk melts, surfaces, and thin-films. Macromolecules 25, 2122 (1992).CrossRefGoogle Scholar
27.Menelle, A., Russell, T.P., Anastasiadis, S.H., Satija, S.K., and Majkrzak, C.F.: Ordering of thin Diblock copolymer films. Phys. Rev. Lett. 68, 67 (1992).Google Scholar
28.Glynos, E., Chremos, A., Frieberg, B., Sakellariou, G., and Green, P.F.: Wetting of macromolecules: from linear chain to soft colloid-like behavior. Macromolecules 47, 1137 (2014).Google Scholar
29.Glynos, E., Frieberg, B., and Green, P.F.: Wetting of a multiarm star-shaped molecule. Phys. Rev. Lett. 107, 118303 (2011).CrossRefGoogle ScholarPubMed
30.Glynos, E., Frieberg, B., Oh, H., Liu, M., Gidley, D.W., and Green, P.F.: Role of molecular architecture on the vitrification of polymer thin films. Phys. Rev. Lett. 106, 128301 (2011).Google Scholar
31.Glynos, E., Frieberg, B., Chremos, A., Sakellariou, G., Gidley, D.W., and Green, P.F.: Vitrification of thin polymer films: from linear chain to soft colloid-like behavior. Macromolecules 48, 2305 (2015).Google Scholar
32.Frieberg, B., Glynos, E., and Green, P.F.: Structural relaxations of thin polymer films. Phys. Rev. Lett. 108, 268304 (2012).CrossRefGoogle ScholarPubMed
33.Frieberg, B., Glynos, E., Sakellariou, G., and Green, P.F.: Physical aging of star-shaped macromolecules. ACS Macro Lett. 1, 636 (2012).CrossRefGoogle ScholarPubMed
34.Wang, S.F., Jiang, Z., Narayanan, S., and Foster, M.D.: Dynamics of surface fluctuations on macrocyclic melts. Macromolecules 45, 6210 (2012).Google Scholar
35.Wang, S.F., Yang, S., Lee, J., Akgun, B., Wu, D.T., and Foster, M.D.: Anomalous surface relaxations of branched-polymer melts. Phys. Rev. Lett. 111, 068303 (2013).Google Scholar
36.Vlassopoulos, D. and Fytas, G.: From polymers to colloids: engineering the dynamic properties of hairy particles, in High Solid Dispersions, edited by Cloitre, M. (Springer-Verlag, Berlin, 2010), pp. 1.Google Scholar
37.Chremos, A., Glynos, E., and Green, P.F.: Structure and dynamical intra-molecular heterogeneity of star polymer melts above glass transition temperature. J. Chem. Phys. 142, 044901 (2015).CrossRefGoogle ScholarPubMed
38.Pearson, D.S. and Helfand, E.: Viscoelastic properties of star-shaped polymers. Macromolecules 17, 888 (1984).CrossRefGoogle Scholar
39.Degennes, P.G. and Pincus, P.: scaling theory of polymer adsorption—proximal exponent. J. Phys. Lett. 44, L241 (1983).Google Scholar
40.Rubinstein, M. and Colby, R.H.: Polymer Physics (Oxford University Press, New York, 2003).CrossRefGoogle Scholar
41.Yoon, D.Y., Vacatello, M., and Smith, G.D.: Monte Carlo and Molecular Dynamics Simulations in Polymer Science (Oxford University Press, New York, 1995).Google Scholar
42.Xia, T.K., Jian, O.Y., Ribarsky, M.W., and Landman, U.: Interfacial alkane films. Phys. Rev. Lett. 69, 1967 (1992).CrossRefGoogle ScholarPubMed
43.Borodin, O., Smith, G.D., Bandyopadhyaya, R., and Byutner, E.: Molecular dynamics study of the influence of solid interfaces on poly(ethylene oxide) structure and dynamics. Macromolecules 36, 7873 (2003).Google Scholar
44.Daoulas, K.C., Harmandaris, V.A., and Mavrantzas, V.G.: Detailed atomistic simulation of a polymer melt/solid interface: structure, density, and conformation of a thin film of polyethylene melt adsorbed on graphite. Macromolecules 38, 5780 (2005).Google Scholar
45.Theodorou, D.N.: Variable-density model of polymer melt solid interfaces—structure, adhesion tension, and surface forces. Macromolecules 22, 4589 (1989).Google Scholar
46.Mansfield, K.F. and Theodorou, D.N.: Molecular-dynamics simulation of a glassy polymer surface. Macromolecules 24, 6283 (1991).Google Scholar
47.Sussman, D.M., Tung, W.-S., Winey, K.I., Schweizer, K.S., and Riggleman, R.A.: Entanglement Reduction and anisotropic chain and primitive path conformations in polymer melts under thin film and cylindrical confinement. Macromolecules 47, 6462 (2014).Google Scholar
48.Ye, C.H., Wiener, C.G., Tyagi, M., Uhrig, D., Orski, S.V., Soles, C.L., Vogt, B.D., and Simmons, D.S.: Understanding the decreased segmental dynamics of supported thin polymer films reported by incoherent neutron scattering. Macromolecules 48, 801 (2015).Google Scholar
49.Soles, C., Douglas, J., Wu, W.L., and Dimeo, R.: Incoherent neutron scattering and the dynamics of confined polycarbonate films. Phys. Rev. Lett. 88, 037401 (2002).Google Scholar
50.Soles, C.L., Douglas, J.F., and Wu, W.-L.: Dynamics of thin polymer films: recent insights from incoherent neutron scattering. J. Polym. Sci. B: Polym. Phys. 42, 3218 (2004).Google Scholar
51.Napolitano, S., Capponi, S., and Vanroy, B.: Glassy dynamics of soft matter under 1D confinement: how irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films. Eur. Phys. J. E 36, 61 (2013).Google Scholar
52.Napolitano, S. and Wubbenhorst, M.: The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nat. Commun. 2, 260 (2011).Google Scholar
53.Soles, C.L., Douglas, J.F., Wu, W.L., Peng, H.G., and Gidley, D.W.: Comparative specular x-ray reflectivity, positron annihilation lifetime spectroscopy, and incoherent neutron scattering measurements of the dynamics in thin polycarbonate films. Macromolecules 37, 2890 (2004).Google Scholar
54.Yelash, L., Virnau, P., Binder, K., and Paul, W.: Three-step decay of time correlations at polymer-solid interfaces. Eerophys. Lett. 98, 5 (2012).Google Scholar
55.Peter, S., Meyer, H., and Baschnagel, J.: Molecular dynamics simulations of concentrated polymer solutions in thin film geometry. I. Equilibrium properties near the glass transition. J. Chem. Phys. 131, 7 (2009).Google Scholar
56.Hanakata, P.Z., Douglas, J.F., and Starr, F.W.: Interfacial mobility scale determines the scale of collective motion and relaxation rate in polymer films. Nat. Commun. 5, 8 (2014).Google Scholar
57.Chai, Y., Salez, T., Mcgraw, J.D., Benzaquen, M., Dalnoki-Veress, K., Raphaël, E., and Forrest, J.A.: A direct quantitative measure of surface mobility in a glassy polymer. Science 343, 994 (2014).Google Scholar
58.De Gennes, P.G.: Glass transitions in thin polymer films. Eur. Phys. J. E 2, 201 (2000).Google Scholar
59.Ediger, M.D. and Forrest, J.A.: Dynamics near free surfaces and the glass transition in thin polymer films: a view to the future. Macromolecules 47, 471 (2013).Google Scholar
60.Ellison, C.J. and Torkelson, J.M.: The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat. Mater. 2, 695 (2003).CrossRefGoogle ScholarPubMed
61.Fakhraai, Z. and Forrest, J.A.: Measuring the surface dynamics of glassy polymers. Science 319, 600 (2008).Google Scholar
62.Paeng, K., Swallen, S.F., and Ediger, M.D.: Direct measurement of molecular motion in freestanding polystyrene thin films. J. Am. Chem. Soc. 133, 8444 (2011).Google Scholar
63.Pye, J.E. and Roth, C.B.: Two simultaneous mechanisms causing glass transition temperature reductions in high molecular weight freestanding polymer films as measured by transmission ellipsometry. Phys. Rev. Lett. 107, 5 (2011).Google Scholar
64.Torres, J.A., Nealey, P.F., and De Pablo, J.J.: Molecular simulation of ultrathin polymeric films near the glass transition. Phys. Rev. Lett. 85, 3221 (2000).Google Scholar
65.Lange, F., Judeinstein, P., Franz, C., Hartmann-Azanza, B., Ok, S., Steinhart, M., and Saalwächter, K.: Large-scale diffusion of entangled polymers along nanochannels. ACS Macro Lett. 4, 561 (2015).Google Scholar
66.Bonn, D., Eggers, J., Indekeu, J., Meunier, J., and Rolley, E.: Wetting and spreading. Rev. Mod. Phys. 81, 739 (2009).Google Scholar
67.De Gennes, P.G., Brochard-Wyart, F., and Quere, D.: Capillarity and Wetting Phenomena (Springer-Verlag, New York, Inc., New York, 2004).Google Scholar
68.Degennes, P.G.: Wetting—statics and dynamics. Rev. Mod. Phys. 57, 827 (1985).Google Scholar
69.Leger, L. and Joanny, J.F.: Liquid spreading. Rep. Prog. Phys. 55, 431 (1992).Google Scholar
70.Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65 (1805).Google Scholar
71.Striolo, A. and Prausnitz, J.M.: Adsorption of branched homopolymers on a solid surface. J. Chem. Phys. 114, 8565 (2001).CrossRefGoogle Scholar
72.Minnikanti, V.S. and Archer, L.A.: Entropic attraction of polymers toward surfaces and its relationship to surface tension. Macromolecules 39, 7718 (2006).Google Scholar
73.Qian, Z.Y., Minnikanti, V.S., Sauer, B.B., Dee, G.T., and Archer, L.A.: Surface tension of symmetric star polymer melts. Macromolecules 41, 5007 (2008).Google Scholar
74.Kosmas, M.K.: Ideal polymer-chains of various architectures at a surface. Macromolecules 23, 2061 (1990).Google Scholar
75.Chremos, A., Camp, P.J., Glynos, E., and Koutsos, V.: Adsorption of star polymers: computer simulations. Soft Matter 6, 1483 (2010).CrossRefGoogle Scholar
76.Forrest, J.A., Dalnokiveress, K., and Dutcher, J.R.: Interface and chain confinement effects on the glass transition temperature of thin polymer films. Phys. Rev. E 56, 5705 (1997).CrossRefGoogle Scholar
77.Forrest, J.A., Dalnokiveress, K., Stevens, J.R., and Dutcher, J.R.: Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 77, 2002 (1996).Google Scholar
78.Forrest, J.A. and Mattsson, J.: Reductions of the glass transition temperature in thin polymer films: Probing the length scale of cooperative dynamics. Phys. Rev. E 61, R53 (2000).Google Scholar
79.Ediger, M.D. and Forrest, J.A.: Dynamics near free surfaces and the glass transition in thin polymer films: a view to the future. Macromolecules 47, 471 (2014).Google Scholar
80.Kawana, S. and Jones, R.a.L.: Character of the glass transition in thin supported polymer films. Phys. Rev. E 63, 021401 (2001).CrossRefGoogle ScholarPubMed
81.Priestley, R., Mundra, M.K., Barnett, N.J., Broadbelt, L.J., and Torkelson, J.M.: Effects of nanoscale confinement and interfaces on the glass transition temperatures of a series of poly(n-methacrylate) films. Aust. J. Chem. 60, 765 (2007).Google Scholar
82.Kim, J.H., Jang, J., and Zin, W.C.: Thickness dependence of the glass transition temperature in thin polymer films. Langmuir 17, 2703 (2001).Google Scholar
83.Pham, J.Q. and Green, P.F.: The glass transition of thin film polymer/polymer blends: interfacial interactions and confinement. J. Chem. Phys. 116, 5801 (2002).Google Scholar
84.Pham, J.Q. and Green, P.F.: Effective T-g of confined polymer–polymer mixtures. Influence of molecular size. Macromolecules 36, 1665 (2003).CrossRefGoogle Scholar
85.Forrest, J.A.: What can we learn about a dynamical length scale in glasses from measurements of surface mobility? J. Chem. Phys. 139, 084702 (2013).Google Scholar
86.Shavit, A. and Riggleman, R.A.: Influence of backbone rigidity on nanoscale confinement effects in model glass-forming polymers. Macromolecules 46, 5044 (2013).Google Scholar
87.Mirigian, S. and Schweizer, K.S.: Communication: slow relaxation, spatial mobility gradients, and vitrification in confined films. J. Chem. Phys. 141, 5 (2014).Google Scholar
88.Struik, L.C.E.: Physical Aging in Amorphous Polymers (Elsevier Scientific Publishing Company, Amsterdam, 1978).Google Scholar
89.Zhao, J., Simon, S.L., and Mckenna, G.B.: Using 20-million-year-old amber to test the super-Arrhenius behaviour of glass-forming systems. Nat. Commun. 4, 6 (2013).Google Scholar
90.Bouchaud, J.P.: Weak ergodicity breaking and aging in disordered-systems. J. Phys. I 2, 1705 (1992).Google Scholar
91.Wang, W.H.: The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 57, 487 (2012).Google Scholar
92.Fulcher, G.S.: Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339 (1925).Google Scholar
93.Tammann, G. and Hesse, W.: The dependency of viscosity on temperature in hypothermic liquids. Z. Anorg. Allg. Chem. 156, 245 (1926).Google Scholar
94.Vogel, H.: The temperature dependence law of the viscosity of fluids. Phys. Z. 22, 645 (1921).Google Scholar
95.Williams, M.L., Landel, R.F., and Ferry, J.D.: Mechanical properties of substances of high molecular weight 19. the temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701 (1955).CrossRefGoogle Scholar
96.Adam, G. and Gibbs, J.H.: On temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965).Google Scholar
97.Ediger, M.D.: Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99 (2000).Google Scholar
98.Berthier, L. and Biroli, G.: Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587 (2011).CrossRefGoogle Scholar
99.Starr, F.W., Douglas, J.F., and Sastry, S.: The relationship of dynamical heterogeneity to the Adam–Gibbs and random first-order transition theories of glass formation. J. Chem. Phys. 138, 12A541 (2013).Google Scholar
100.Hutchinson, J.M.: Physical aging of polymers. Prog. Polym. Sci. 20, 703 (1995).Google Scholar
101.Kovacs, A.J., Aklonis, J.J., Hutchinson, J.M., and Ramos, A.R.: Isobaric volume and enthalpy recovery of glasses .2. Transparent multi-parameter theory. J. Polym. Sci. B: Polym. Phys. 17, 1097 (1979).Google Scholar
102.Hodge, I.M.: Physical aging in polymer glasses. Science 267, 1945 (1995).Google Scholar
103.Mckenna, G.B.: Mechanical rejuvenation in polymer glasses: fact or fallacy? J. Phys.: Condens. Matter 15, S737 (2003).Google Scholar
104.Baker, E.A., Rittigstein, P., Torkelson, J.M., and Roth, C.B.: Streamlined ellipsometry procedure for characterizing physical aging rates of thin polymer films. J. Polym. Sci. B: Polym. Phys. 47, 2509 (2009).Google Scholar
105.Shavit, A. and Riggleman, R.A.: Physical aging, the local dynamics of glass-forming polymers under nanoscale confinement. J. Phys. Chem. B 118, 9096 (2014).Google Scholar
106.Paeng, K. and Ediger, M.D.: Molecular motion in free-standing thin films of poly(methyl methacrylate), poly(4-tert-butylstyrene), poly(alpha-methylstyrene), and poly(2-vinylpyridine). Macromolecules 44, 7034 (2011).Google Scholar
107.Bohme, T.R. and De Pablo, J.J.: Evidence for size-dependent mechanical properties from simulations of nanoscopic polymeric structures. J. Chem. Phys. 116, 9939 (2002).Google Scholar
108.Yoshimoto, K., Jain, T.S., Nealey, P.F., and De Pablo, J.J.: Local dynamic mechanical properties in model free-standing polymer thin films. J. Chem. Phys. 122, 144712 (2005).Google Scholar
109.Clifford, C.A. and Seah, M.P.: Modelling of nanomechanical nanoindentation measurements using an AFM or nanoindenter for compliant layers on stiffer substrates. Nanotechnology 17, 5283 (2006).Google Scholar
110.Clifford, C.A. and Seah, M.P.: Nanoindentation measurement of Young's modulus for compliant layers on stiffer substrates including the effect of Poisson's ratios. Nanotechnology 20, 145708 (2009).Google Scholar
111.Stafford, C.M., Vogt, B.D., Harrison, C., Julthongpiput, D., and Huang, R.: Elastic moduli of ultrathin amorphous polymer films. Macromolecules 39, 5095 (2006).Google Scholar
112.Torres, J.M., Stafford, C.M., and Vogt, B.D.: Elastic modulus of amorphous polymer thin films: relationship to the glass transition temperature. ACS Nano 3, 2677 (2009).Google Scholar