Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T10:39:14.607Z Has data issue: false hasContentIssue false

Platinum and hybrid polyaniline–platinum surfaces for the electrocatalytic reduction of CO2

Published online by Cambridge University Press:  15 May 2015

David N. Abram
Affiliation:
Department of Chemical Engineering, Stanford University, Stanford, California 94305-4125, USA
Kendra P. Kuhl
Affiliation:
Department of Chemistry, Stanford University, Stanford, California, USA
Etosha R. Cave
Affiliation:
Department of Mechanical Engineering, Stanford University, Stanford, California, USA
Thomas F. Jaramillo*
Affiliation:
Department of Chemical Engineering, Stanford University, 443 Via Ortega, Shriram Center Room 305, Stanford, California, USA
*
Address all correspondence to Thomas F. Jaramillo at[email protected]
Get access

Abstract

Catalyst development is needed to enable the use of renewable electricity to chemically convert carbon dioxide (CO2) and water into fuels and chemicals, a more sustainable, lower-carbon alternative to conventional processes that produce fuels and chemicals based on fossil resources. In this study, the catalytic activity and selectivity of polycrystalline platinum (Pt) is thoroughly characterized for the CO2 reduction reaction, based on an electrochemical cell design that offers high sensitivity for product detection. Thin polyaniline films are then electrodeposited onto polycrystalline Pt foils to form hybrid organic–inorganic surfaces. The addition of the polymer is observed to have an impact on the catalytic chemistry, yielding up to a fivefold enhancement in formate and CO production over pure Pt foils. This work elucidates new strategies to perturb interfacial chemistry in a manner that could help steer CO2 electro-reduction catalysis in desired directions.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Dunn, B., Kamath, H., and Tarascon, J.M.: Electrical energy storage for the grid: a battery of choices. Science 334, 928 (2011).Google Scholar
2.Lewis, N.S.: Toward cost-effective solar energy use. Science 315, 798 (2007).Google Scholar
3.Aresta, M.: Carbon Dioxide as a Chemical Feedstock (Weinheim, Wiley-VCH, John Wiley & Sons, 2010).Google Scholar
4.Whipple, D.T. and Kenis, P.J.A.: Prospects of CO2 Utilization via direct heterogeneous electrochemical reduction. J. Phys. Chem. Lett. 1, 3451 (2010).Google Scholar
5.Jitaru, M., Lowy, D.A., Toma, M., Toma, B.C., and Oniciu, L.: Electrochemical reduction of carbon dioxide on flat metallic cathodes. J. Appl. Electrochem. 27, 875 (1997).Google Scholar
6.Hori, Y., Wakebe, H., Tsukamoto, T., and Koga, O.: Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39, 1833 (1994).CrossRefGoogle Scholar
7.Kuhl, K.P., Cave, E.R., Abram, D.N., and Jaramillo, T.F.: New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050 (2012).Google Scholar
8.Kauffman, D.R., Alfonso, D., Matranga, C., Qian, H., and Jin, R.: Experimental and computational investigation of Au25 clusters and CO2: a unique interaction and enhanced electrocatalytic activity. J. Am. Chem. Soc. 134, 10237 (2012).CrossRefGoogle ScholarPubMed
9.Chen, Y., Li, C.W., and Kanan, M.W.: Aqueous CO2 reduction at very low overpotential on oxide-derived au nanoparticles. J. Am. Chem. Soc. 134, 19969 (2012).Google Scholar
10.Watanabe, M., Shibata, M., Katoh, A., Sakata, T., and Azuma, M.: Design of alloy electrocatalysts for CO2 reduction: improved energy efficiency, selectivity, and reaction rate for the CO2 electroreduction on Cu alloy electrodes. J. Electroanal. Chem. Interfacial Electrohem. 305, 319 (1991).CrossRefGoogle Scholar
11.Rosen, B.A., Salehi-Khojin, A., Thorson, M.R., Zhu, W., Whipple, D.T., Kenis, P.J.A., and Masel, R.I.: Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643 (2011).Google Scholar
12.Ogura, K., Endo, N., and Nakayama, M.: Mechanistic studies of CO2 reduction on a mediated electrode with conducting polymer and inorganic conductor films. J. Electrochem. Soc. 145, 3801 (1998).Google Scholar
13.Aurian-Blajeni, B., Taniguchi, I., and Bockris, J.O.M.: Photoelectrochemical reduction of carbon dioxide using polyaniline-coated silicon. J. Electroanal. Chem. 149, 291 (1983).Google Scholar
14.Aydin, R. and Koleli, F.: Electrochemical reduction of CO2 on a polyaniline electrode under ambient conditions and at high pressure in methanol. J. Electroanal. Chem. 535, 107 (2002).Google Scholar
15.Zhang, A., Zhang, W., Lu, J., Wallace, G.G., and Chen, J.: Electrocatalytic reduction of carbon dioxide by cobalt-phthalocyanine-incorporated polypyrrole. Electrochem. Solid-State Lett. 12, E17 (2009).Google Scholar
16.Rochelle, G.T.: Amine scrubbing for CO2 capture. Science 325, 1652 (2009).Google Scholar
17.Peterson, A.A. and Nørskov, J.K.: Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251 (2012).CrossRefGoogle Scholar
18.Brisard, G.M., Camargo, A.P.M., Nart, F.C., and Iwasita, T.: On-line mass spectrometry investigation of the reduction of carbon dioxide in acidic media on polycrystalline Pt. Electrochem. Commun. 3, 603 (2001).CrossRefGoogle Scholar
19.Kuhl, K.P., Hatsukade, T., Cave, E.R., Abram, D.N., Kibsgaard, J., and Jaramillo, T.F.: Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 1410714113 (2014).Google Scholar
20.Cruz, C.M.G.S. and Ticianelli, E.A.: Electrochemical and ellipsometric studies of polyaniline films grown under cycling conditions. J. Electroanal. Chem. 428, 185 (1997).Google Scholar
21.Chen, Z., Jaramillo, T.F., Deutsch, T.G., Kleiman-Shwarsctein, A., Forman, A.J., Gaillard, N., Garland, R., Takanabe, K., Heske, C., Sunkara, M., McFarland, E.W., Domen, K., Miller, E.L., Turner, J.A., and Dinh, H.N.: Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3 (2011).Google Scholar
22.Leiva, E.P.M., Santos, E., and Iwasita, T.: The effect of adsorbed carbon monoxide on hydrogen adsorption and hydrogen evolution on platinum. J. Electroanal. Chem. Interfacial Chem. 215, 357 (1986).CrossRefGoogle Scholar
23.Cui, C.Q., Su, X.H., and Lee, J.Y.: Measurement and evaluation of polyaniline degradation. Polym. Degrad. Stab. 41, 69 (1993).Google Scholar
24.Schouten, K.J.: Electrocatalytic Carbon Dioxide Reduction, a Mechanistic Study, in Chemistry (Leiden University, Leiden Institute of Chemistry, Netherlands, 2013).Google Scholar
25.Zhang, S., Kang, P., and Meyer, T.J.: Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 136, 1734 (2014).CrossRefGoogle Scholar
26.MacDiarmid, A.G., Chiang, J.C., and Richter, A.F.: Polyaniline – a new concept in conducting polymers. Synth. Met. 18, 285 (1987).CrossRefGoogle Scholar
27.Morris, A.J., McGibbon, R.T., and Bocarsly, A.B.: Electrocatalytic carbon dioxide activation: the rate-determining step of pyridinium-catalyzed CO2 reduction. ChemSusChem 4, 191 (2011).Google Scholar
28.Cole, E.B., Lakkaraju, P.S., Rampulla, D.M., Morris, A.J., Abelev, E., and Bocarsly, A.B.: Using a one-electron shuttle for the multielectron reduction of CO2 to methanol – kinetic, mechanistic, and structural insights. J. Am. Chem. Soc. 132, 11539 (2010).CrossRefGoogle ScholarPubMed
29.Vogiatzis, K.D., Mavrandonakis, A., Klopper, W., and Froudakis, G.E.: Ab initio study of the interactions between CO2 and N-containing organic heterocycles. Chemphyschem: Eur. J. Chem. Phys. Phys. Chem. 10, 374 (2009).Google Scholar
Supplementary material: PDF

Abram supplementary material S1

Abram supplementary material

Download Abram supplementary material S1(PDF)
PDF 40.8 KB