Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T07:43:38.689Z Has data issue: false hasContentIssue false

Phonon scattering mechanism in thermoelectric materials revised via resonant x-ray dynamical diffraction

Published online by Cambridge University Press:  22 May 2020

Adriana Valério
Affiliation:
Institute of Physics, University of São Paulo, São Paulo, SP, Brazil
Rafaela F.S. Penacchio
Affiliation:
Institute of Physics, University of São Paulo, São Paulo, SP, Brazil
Maurício B. Estradiote
Affiliation:
Institute of Physics, University of São Paulo, São Paulo, SP, Brazil
Marli R. Cantarino
Affiliation:
Institute of Physics, University of São Paulo, São Paulo, SP, Brazil
Fernando A. Garcia
Affiliation:
Institute of Physics, University of São Paulo, São Paulo, SP, Brazil
Sérgio L. Morelhão*
Affiliation:
Institute of Physics, University of São Paulo, São Paulo, SP, Brazil
Niamh Rafter
Affiliation:
Department of Physics, University of Guelph, Guelph, OntarioN1G 1W2, Canada
Stefan W. Kycia
Affiliation:
Department of Physics, University of Guelph, Guelph, OntarioN1G 1W2, Canada
Guilherme A. Calligaris
Affiliation:
Brazilian Synchrotron Light Laboratory – LNLS/CNPEM, Campinas, SP, Brazil
Cláudio M.R. Remédios
Affiliation:
Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA, Brazil
*
Address all correspondence to Sérgio L. Morelhão at [email protected]
Get access

Abstract

Engineering of thermoelectric materials requires an understanding of thermal conduction by lattice and electronic degrees of freedom. Filled skutterudites denote a large family of materials suitable for thermoelectric applications where reduced lattice thermal conduction attributed to localized low-frequency vibrations (rattling) of filler cations inside large cages of the structure. In this work, a multi-wavelength method of exploiting x-ray dynamical diffraction in single crystals of CeFe4P12 is presented and applied to resolve the atomic amplitudes of vibrations. The results suggest that the vibrational dynamics of the whole filler-cage system is the actual active mechanism behind the optimization of thermoelectric properties.

Type
Research Letters
Copyright
Copyright © Materials Research Society, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Snyder, J.G. and Toberert, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).CrossRefGoogle ScholarPubMed
McGaughey, A.J.H., Jain, A., Kim, H.-Y., and Fu, B.: Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation featured. J. Appl. Phys. 125, 011101 (2019).CrossRefGoogle Scholar
Zhu, Y., Liu, Y., Wood, M., Koocher, N.Z., Liu, Y., Liu, L., Hu, T., Rondinelli, J.M., Hong, J., Snyder, G.J., and Xu, W.: Synergistically optimizing carrier concentration and decreasing sound velocity in n-type AgInSe2 thermoelectrics. Chem. Mater. 31, 8182 (2019).CrossRefGoogle Scholar
Luo, Z.-Z., Cai, S., Hao, S., Bailey, T.P., Hu, X., Hanus, R., Ma, R., Tan, G., Chica, D.G., Snyder, G.J., Uher, C., Wolverton, C., Dravid, V.P., Yan, Q., and Kanatzidis, M.G.: Ultralow thermal conductivity and high-temperature thermoelectric performance in n-type K2.5Bi8.5Se14. Chem. Mater. 31, 5943 (2019).CrossRefGoogle Scholar
Slade, T.J., Bailey, T.P., Grovogui, J.A., Hua, X., Zhang, X., Kuo, J.J., Hadar, I., Snyder, G.J., Wolverton, C., Dravid, V.P., Uher, C., and Kanatzidis, M.G.: High thermoelectric performance in PbSe–NaSbSe2 alloys from valence band convergence and low thermal conductivity. Adv. Energy Mater. 9, 1901377 (2019).CrossRefGoogle Scholar
Shi, Y., Mashmoushi, N., Wegner, W., Jafarzadeh, P., Sepahi, Z., Assouda, A., and Kleinke, H.: Ultralow thermal conductivity of Tl4Ag18Te11. J. Mater. Chem. C 7, 8029 (2019).CrossRefGoogle Scholar
Liu, H., Liu, J., Jing, R., and You, C.: Anisotropic thermal conductivity in direction-specific black phosphorus nanoflakes. MRS Commun. 9, 1311 (2019).CrossRefGoogle Scholar
Ding, J., Niedziela, J.L., Bansal, D., Wang, J., He, X., May, A.F., Ehlers, G., Abernathy, D.L., Said, A., Alatas, A., Ren, Y., Arya, G., and Delaire, O.: Anharmonic lattice dynamics and superionic transition in AgCrSe2. Proc. Natl. Acad. Sci. USA 117, 3930 (2020).CrossRefGoogle ScholarPubMed
Gurunathan, R., Hanus, R., Dylla, M., Katre, A., and Snyder, G.J.: Analytical models of phonon–point-defect scattering. Phys. Rev. Appl. 13, 034011 (2020).CrossRefGoogle Scholar
Imasato, K., Fu, C., Pan, Y., Wood, M., Kuo, J.J., Felser, C., and Snyder, G.J.: Metallic n-type Mg3Sb2 single crystals demonstrate the absence of ionized impurity scattering and enhanced thermoelectric performance. Adv. Mater. 32, 1908218 (2020).CrossRefGoogle Scholar
Hermann, R.P., Grandjean, F., and Long, G.J.: Einstein oscillators that impede thermal transport. Am. J. Phys. 73, 110 (2005).CrossRefGoogle Scholar
Jeitschko, W. and Braun, D.: LaFe4P12 with filled CoAs3-type structure and isotypic lanthanoid-transition metal polyphosphides. Acta Cryst. B 33, 3401 (1977).CrossRefGoogle Scholar
Elsheikh, M.H., Sabri, M.F.M., Said, S.M., Miyazaki, Y., Masjuki, H., Shnawah, D.A., Naito, S., and Bashir, M.B.A.: Rapid preparation of bulk AlxYb0.25Co4Sb12 (x = 0, 0.1, 0.2, 0.3) skutterudite thermoelectric materials with high figure of merit ZT = 1.36. J. Mater. Sci. 52, 5324 (2017).CrossRefGoogle Scholar
Chen, F., Liu, R., Yao, Z., Xing, Y., Bai, S., and Chen, L.: Scanning laser melting for rapid and massive fabrication of filled skutterudites with high thermoelectric performance. J. Mater. Chem. A 6, 6772 (2018).CrossRefGoogle Scholar
Hudak, B.M., Sun, W., Mackey, J., Ullah, A., Sehirlioglu, A., Dynys, F., Pantelides, S.T., and Guiton, B.S.: Observation of square-planar distortion in lanthanide-doped skutterudite crystals. J. Phys. Chem. C 123, 14632 (2019).CrossRefGoogle Scholar
Yu, J., Zhu, W., Zhao, W., Luo, Q., Liu, Z., and Chen, H.: Rapid fabrication of pure p-type filled skutterudites with enhanced thermoelectric properties via a reactive liquid-phase sintering. J. Mater. Sci. 55, 7432 (2020).CrossRefGoogle Scholar
Bashir, M.B.A., Sabri, M.F.M., Said, S.M., Miyazaki, Y., Badruddin, I.A., Shnawah, D.A.A., Salih, E.Y., Abushousha, S., and Elsheikh, M.H.: Enhancement of thermoelectric properties of Co4Sb12 skutterudite by Al and La double filling. J. Solid State Chem. 284, 121205 (2020).CrossRefGoogle Scholar
Jiang, J., Zhu, H., Niu, Y., Zhu, Q., Song, S., Zhou, T., Wang, C., and Ren, Z.: Achieving high room-temperature thermoelectric performance in cubic AgCuTe. J. Mater. Chem. A 8, 4790 (2020).CrossRefGoogle Scholar
Yang, J., Meisner, G.P., Morelli, D.T., and Uher, C.: Iron valence in skutterudites: transport and magnetic properties of Co1−xFexSb3. Phys. Rev. B 63, 014410 (2000).CrossRefGoogle Scholar
Cao, D., Bridges, F., Chesler, P., Bushart, S., Bauer, E.D., and Maple, M.B.: Evidence for rattling behavior of the filler atom (L) in the filled skutterudites LT4X12 (L = Ce, Eu, Yb; T = Fe, Ru; X = P, Sb) from EXAFS studies. Phys. Rev. B 70, 094109 (2004).CrossRefGoogle Scholar
Koza, M.M., Johnson, M.R., Viennois, R., Mutka, H., Girard, L., and Ravot, D.: Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. Nat Mater. 7, 805 (2008).CrossRefGoogle Scholar
Parks, H.L., McGaughey, A.J.H., and Viswanathan, V.: Uncertainty quantification in first-principles predictions of harmonic vibrational frequencies of molecules and molecular complexes. J. Phys. Chem. C 123, 4072 (2019).CrossRefGoogle Scholar
Liu, Z., Zhu, W., Nie, X., and Zao, W.: Effects of sintering temperature on microstructure and thermoelectric properties of Ce-filled Fe4Sb12 skutterudites. J. Mater. Sci. Mater. Electron. 30, 12493 (2019).CrossRefGoogle Scholar
Menasche, D.B., Shade, P.A., and Suter, R.M.: Accuracy and precision of near-field high-energy diffraction microscopy forward-model-based microstructure reconstructions. J. Appl. Cryst. 53, 107 (2020).CrossRefGoogle Scholar
Shen, Y.-F., Maddali, S., Menasche, D., Bhattacharya, A., Rohrer, G.S., and Suter, R.M.: Importance of outliers: a three-dimensional study of coarsening in a-phase iron. Phys. Rev. Mater. 3, 063611 (2019).CrossRefGoogle Scholar
Shiraishi, Y., Tanabe, K., Taniguchi, H., Okazaki, R., and Terasaki, I.: Interplay between quantum paraelectricity and thermoelectricity in the photo-Seebeck effect in a SrTiO3 single crystal featured. J. Appl. Phys. 126, 045111 (2019).CrossRefGoogle Scholar
Grandjean, F., Gérard, A., Braung, D.J., and Jeitschko, W.: Some physical properties of LaFe4P12 type compounds. J. Phys. Chem. Solids 45, 877 (1984).CrossRefGoogle Scholar
Roman, G., Horst, B., Alim, O., Helge, R., Walter, S., Michael, N., Yuri, G., and Andreas, L.-J.: Filled platinum germanium skutterudites MPt4Ge12 (M = Sr, Ba, La–Nd, Sm, Eu): crystal structure and chemical bonding. Z. Krist.-Cryst. Mater. 225, 531 (2010).Google Scholar
Morelhão, S.L. and Avanci, L.H.: Strength tuning of multiple waves in crystals. Acta Cryst. A 57, 192 (2001).CrossRefGoogle ScholarPubMed
Morelhão, S.L. and Kycia, S.: Enhanced X-ray phase determination by three-beam diffraction. Phys. Rev. Lett. 89, 015501 (2002).CrossRefGoogle ScholarPubMed
Morelhão, S.L.: An X-ray diffractometer for accurate structural invariant phase determination. J. Synchrotron Radiat. 10, 236 (2003).CrossRefGoogle ScholarPubMed
Morelhão, S.L.: Accurate triplet phase determination in non-perfect crystals – a general phasing procedure. Acta Cryst. A 59, 470 (2003).CrossRefGoogle ScholarPubMed
Morelhão, S.L., Avanci, L.H., and Kycia, S.: Study of crystalline structures via physical determination of triplet phase invariants. Nucl. Instrum. Meth. B 238, 175 (2005).CrossRefGoogle Scholar
Morelhão, S.L., Avanci, L.H., and Kycia, S.: Automatic X-ray crystallographic phasing at LNLS. Nucl. Instrum. Meth. B 238, 180 (2005).CrossRefGoogle Scholar
Morelhão, S.L., Avanci, L.H., and Kycia, S.: Energy conservation in approximated solutions of multi-beam scattering problems. Nucl. Instrum. Meth. B 239, 245 (2005).CrossRefGoogle Scholar
Wu, J., Leinenweber, K., Spence, J.C.H., and O'Keeffe, M.: Ab initio phasing of X-ray powder diffraction patterns by charge flipping. Nat. Mater. 5, 647 (2006).CrossRefGoogle ScholarPubMed
Amirkhanyan, Z.G., Remédios, C.M.R., Mascarenhas, Y.P., and Morelhão, S.L.: Analyzing structure factor phases in pure and doped single crystals by synchrotron X-ray Renninger scanning. J. Appl. Cryst 47, 160 (2014).CrossRefGoogle Scholar
Morelhão, S.L., Amirkhanyan, Z.G., and Remédios, C.M.R.: Absolute refinement of crystal structures by X-ray phase measurements. Acta Cryst. A 71, 291 (2015).CrossRefGoogle ScholarPubMed
Morelhão, S.L., Remédios, C.M.R., Calligaris, G.A., and Nisbet, G.: X-ray dynamical diffraction in amino acid crystals: a step towards improving structural resolution of biological molecules via physical phase measurements. J. Appl. Cryst. 50, 689 (2017).CrossRefGoogle ScholarPubMed
Morelhão, S.L., Remédios, C.M.R., Freitas, R.O., and dos Santos, A.O.: X-ray phase measurements as a probe of small structural changes in doped nonlinear optical crystals. J. Appl. Cryst. 44, 93 (2011).CrossRefGoogle Scholar
Sato, H., Abe, Y., Okada, H., Matsuda, T. D., Abe, K., Sugawara, H., and Aoki, Y.: Anomalous transport properties of RFe4P12 (R = La, Ce, Pr, and Nd). Phys. Rev. B 62, 15125 (2000).CrossRefGoogle Scholar
Matsunami, M., Horiba, K., Taguchi, M., Yamamoto, K., Chainani, A., Takata, Y., Senba, Y., Ohashi, H., Yabashi, M., Tamasaku, K., Nishino, Y., Miwa, D., Ishikawa, T., Ikenaga, E., Kobayashi, K., Sugawara, H., Sato, H., Harima, H., and Shin, S.: Electronic structure of semiconducting CeFe4P12: strong hybridization and relevance of single-impurity Anderson model. Phys. Rev. B 77, 165126 (2008).CrossRefGoogle Scholar
Garcia, F.A., Venegas, P.A., Pagliuso, P.G., Rettori, C., Fisk, Z., Schlottmann, P., and Oseroff, S.B.: Thermally activated exchange narrowing of the Gd3+ ESR fine structure in a single crystal of Ce1-xGdxFe4P12 (x = 0.001) skutterudite. Phys. Rev. B 84, 125116 (2011).CrossRefGoogle Scholar
Venegas, P.A., Garcia, F.A., Garcia, D.J., Cabrera, G.G., Avila, M.A., and Rettori, C.: Collapse of the Gd3+ ESR fine structure throughout the coherent temperature of the Gd-doped Kondo Semiconductor CeFe4P12. Phys. Rev. B 94, 235143 (2016).CrossRefGoogle Scholar
Morelhão, S.L., Kycia, S., Netzke, S., Fornari, C.I., Rappl, P.H.O., and Abramof, E.: Hybrid reflections from multiple X-ray scattering in epitaxial bismuth telluride topological insulator films. Appl. Phys. Lett. 112, 101903 (2018).CrossRefGoogle Scholar
Morelhão, S.L., Kycia, S.W., Netzke, S., Fornari, C.I., Rappl, P.H.O., and Abramof, E.: Dynamics of defects in van der Waals epitaxy of bismuth telluride topological insulators. J. Phys. Chem. C 123, 24818 (2019).CrossRefGoogle Scholar
Weckert, E. and Hummer, K.: Multiple-beam X-ray diffraction for physical determination of reflection phases and its applications. Acta Cryst. A 53, 108 (1997).CrossRefGoogle Scholar
Avanci, L.H., Hayashi, M.A., Cardoso, L.P., Morelhão, S.L., Riesz, F., Rakennus, K., and Hakkarainen, T.: Mapping of Bragg-surface diffraction of InP/GaAs(100) structure. J. Cryst. Growth 188, 220 (1998).CrossRefGoogle Scholar
Freitas, R.O., Morelhão, S.L., Avanci, L.H., and Quivy, A.A.: Strain field of InAs QDs on GaAs (001) substrate surface: characterization by synchrotron X-ray Renninger scanning. Microelectron. J. 36, 219 (2005).Google Scholar
Freitas, R.O., Lamas, T.E., Quivy, A.A., and Morelhão, S.L.: Synchrotron X-ray Renninger scanning for studying strain in InAs/GaAs quantum dot system. Phys. Status Solidi A 204, 2548 (2007).CrossRefGoogle Scholar
de Menezes, A.S., dos Santos, A.O., Almeida, J.M.A., Bortoleto, J.R.R., Cotta, M.A., Morelhão, S.L., and Cardoso, L.P.: Direct observation of tetragonal distortion in epitaxial structures through secondary peak split in a synchrotron radiation Renninger scan. Cryst. Growth Des. 10, 3426 (2010).CrossRefGoogle Scholar
Avanci, L.H., Cardoso, L.P., Girdwood, S.E., Pugh, D., Sherwood, J.N., and Roberts, K.J.: Piezoelectric coefficients of mNA organic nonlinear optical material using synchrotron X-ray multiple diffraction. Phys. Rev. Lett. 81, 5426 (1998).CrossRefGoogle Scholar
Morelhão, S.L.: Computer Simulation Tools for X-ray Analysis, 1st ed. (Springer International Publishing, Cham, 2016), pp. 2444.CrossRefGoogle Scholar
Domagała, J.Z., Morelhão, S.L., Sarzyński, M., Maździarz, M., Dłuzewski, P., and Leszczyński, M.: Hybrid reciprocal lattice: application to layer stress determination in GaAlN/GaN(0001) systems with patterned substrates. J. Appl. Cryst. 49, 798 (2016).CrossRefGoogle Scholar
Supplementary material: PDF

Valério et al. supplementary material

Valério et al. supplementary material

Download Valério et al. supplementary material(PDF)
PDF 1.8 MB