Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T07:37:03.529Z Has data issue: false hasContentIssue false

Phonon drag effect in nanocomposite FeSb2

Published online by Cambridge University Press:  07 March 2013

Mani Pokharel*
Affiliation:
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467
Huaizhou Zhao
Affiliation:
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467
Kevin Lukas
Affiliation:
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467
Zhifeng Ren
Affiliation:
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467
Cyril Opeil
Affiliation:
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467
Bogdan Mihaila
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
*
Address all correspondence to Mani Pokharel at[email protected]
Get access

Abstract

We study the temperature dependence of thermoelectric transport properties of four FeSb2 nanocomposite samples with different grain sizes. The comparison of the single crystals and nanocomposites of varying grain sizes indicates the presence of substantial phonon drag effects in this system contributing to a large Seebeck coefficient at low temperature. As the grain size decreases, the increased phonon scattering at the grain boundaries leads to a suppression of the phonon-drag effect, resulting in a much smaller peak value of the Seebeck coefficient in the nanostructured bulk materials. As a consequence, the ZT values are not improved significantly even though the thermal conductivity is drastically reduced.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Holseth, H. and Kjekshus, A.: Compounds with marcasite type of structure IV. The crystal structure of FeSb2. Acta Chem. Scand. 23, 3043 (1969).CrossRefGoogle Scholar
2Fan, A.K.L., Rosenthal, G.H., McKinzie, H.L., and Wold, A.: Preparation and properties of FeAs2 and FeSb2. J. Solid State Chem. 5, 136 (1972).Google Scholar
3Steger, J. and Kostiner, E.: Mossbauer effect study of FeSb2. J. Solid State Chem. 5, 131 (1972).Google Scholar
4Petrovic, C., Kim, J.W., Bud'ko, S.L., Goldman, A.I., and Canfield, P.C.: Anisotropy and large magnetoresistance in the narrow-gap semiconductor FeSb2. Phys. Rev. B 67, 155205 (2003).Google Scholar
5Bentien, A., Johnsen, S., Madsen, G.K.H., Iversen, B.B., and Steglich, F.: Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2. Euro. Phys. Lett. 80, 17008 (2007).Google Scholar
6Zhao, H., Pokharel, M., Zhu, G., Chen, S., Lukas, K., Qing, J., Opeil, C., Chen, G., and Ren, Z.: Dramatic thermal conductivity reduction by nanostructures for large increase in thermoelectric figure-of-merit of FeSb2. Appl. Phys. Lett. 99, 163101 (2011).Google Scholar
7Herring, C.: Theory of the thermoelectric power of semiconductors. Phys. Rev. 96, 1163 (1954).CrossRefGoogle Scholar
8Geballe, T.H. and Hull, G.W.: Seebeck effect in silicon. Phys. Rev. 94, 1134 (1954).Google Scholar
9Sun, P., Oeschler, N., Johnsen, S., Iversen, B.B., and Steglich, F.: Narrow band gap and enhanced thermoelectricity in FeSb2. Dalton Trans. 39, 1012 (2010).Google Scholar
10Sun, P., Oeschler, N., Johnsen, S., Iversen, B.B., and Steglich, F.: FeSb2: prototype of huge electron-diffusion thermoelectricity. Phys. Rev. B 79, 153308 (2009).Google Scholar
11Bentien, A., Madsen, G.K.H., Johnsen, S., and Iversen, B.B.: Experimental and theoretical investigations of strongly correlated FeSb2−xSnx. Phys. Rev. B 74, 205105 (2006).Google Scholar
12Sun, P., Søndergaard, M., Sun, Y., Johnsen, S., Iversen, B.B., and Steglich, F.: Unchanged thermopower enhancement at the semiconductor-metal transition in correlated FeSb2−xTex. Appl. Phys. Lett. 98, 072105 (2011).Google Scholar
13Takahashi, H., Okazaki, R., Yasui, Y., and Terasaki, I.: Low-temperature magnetotransport of narrow-gap semiconductor FeSb2. Phys. Rev. B 84, 205215 (2011).CrossRefGoogle Scholar
14Tomczak, J.M., Haule, K., Miyake, T., Georges, A., and Kotliar, G.: Thermopower of correlated semiconductors: application to FeAs2 and FeSb2. Phys. Rev. B 82, 085104 (2010).Google Scholar
15Abrikosov, N. Kh. and Petrova, L.I.: The polythermal cross-section FeSb2-FeTe2 of the Fe-Sb-Te system. Inorg. Mater. 25, 1087 (1989).Google Scholar
16Sun, Y., Johnsen, S., Eklund, P., Sillassen, M., Bøttiger, J., Oeschler, N., Sun, P., Steglich, F., and Iversen, B.B.: Thermoelectric transport properties of highly oriented FeSb2 thin films. J. Appl. Phys. 106, 033710 (2009).Google Scholar
17Weber, L., Lehr, M., and Gmelin, E.: Reduction of the thermopower in semiconducting point contacts. Phys. Rev. B 46, 9511 (1992).Google Scholar
18Blatt, F.J.: Physics of Electronic Conduction in Solids (McGraw-Hill, New York, NY, 1968).Google Scholar
19Hou, Q.R., Gu, B.F., Chen, Y.B., and He, Y.J.: Phonon-drag effect of ultra-thin FeSi2 and MnSi1.7/FeSi2 films. Mod. Phys. Lett. B 25, 1829 (2011).Google Scholar
20Issi, J.P. and Boxus, J.: Phonon-drag low temperature refrigeration. Cryogenics 19, 517 (1979).Google Scholar
21Weber, L. and Gmelin, E.: Transport properties of silicon. Appl. Phys. A 53, 136 (1991).Google Scholar
22Perucchi, A., Degiorgi, L., Hu, R., Petrovic, C., and Mitrović, V.F.: Optical investigation of the metal-insulator transition in FeSb2. Eur. Phys. J., B 54, 175 (2006).CrossRefGoogle Scholar
23Lazarević, N., Popović, Z.V., Hu, R., and Petrovic, C.: Evidence for electron-phonon interaction in Fe1−xM xSb2 (M = Co and Cr; 0 ≤ x ≤ 0.5) single crystals. Phys. Rev. B 81, 144302 (2010).CrossRefGoogle Scholar
24Morelli, D.T.: Phonon-drag thermopower. Ph.D. Dissertation. University of Michigan, 1985., p. 82.Google Scholar
25Tang, J., Wang, W., Zhao, G.L., and Li, Q.: Colossal positive Seebeck coefficient and low thermal conductivity in reduced TiO2. J. Phys. Condens. Matter 21, 205703 (2009).Google Scholar
26Petrovic, C., Lee, Y., Vogt, T., Lazarov, Dj.N., Bud'ko, S.L., and Canfield, J.: Kondo insulator description of spin state transition in FeSb2. Phys. Rev. B 72, 045103 (2005).Google Scholar
27Ziman, J.: Electrons and Phonons (Oxford University Press, Oxford, UK, 2001).Google Scholar
28Thurber, W.R. and Mante, A.J.H.: Thermal conductivity and thermoelectric power of rutile (TiO2). Phys. Rev. 139, A1655 (1965).Google Scholar
29Keyes, R.W.: Thermoelectricity: Science and Engineering, edited by Heikes, R.R. and Ure, R.W. Jr., (Interscience, New York, 1961).Google Scholar
30Goldsmid, H.J.: Introduction to Thermoelectricity: Springer Series in Material Science (Springer-Verlag, Berlin, Germany, 2010).Google Scholar
31Ivanov, Y.U.V.: Thermoelectric Handbook: Macro to Nano, edited by Rowe, D.M. (CRC Taylor and Francis, Boca Raton, FL, 2006).Google Scholar
32Becke, A.D.: A new mixing of Hartree–Fock and local density – functional theories. J. Chem. Phys. 98, 1372 (1993).Google Scholar
33Hedin, L.: New method for calculating the one-particle Green's function with application to the electron-gas problem. Phys. Rev. 139, A796 (1965).Google Scholar
34Frederikse, H.P.R. and Mielczarek, E.V.: Thermoelectric power of indium antimonide. Phys. Rev. 99, 1889 (1955).Google Scholar