Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T07:38:31.909Z Has data issue: false hasContentIssue false

A perspective on triplet fusion upconversion: triplet sensitizers beyond quantum dots

Published online by Cambridge University Press:  02 September 2019

Zachary A. VanOrman
Affiliation:
Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306, USA
Alexander S. Bieber
Affiliation:
Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306, USA
Sarah Wieghold
Affiliation:
Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306, USA
Lea Nienhaus*
Affiliation:
Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306, USA
*
Address all correspondence to Lea Nienhaus at [email protected]
Get access

Abstract

The processes of singlet fission and triplet fusion could allow state-of-the-art photovoltaic devices to surpass the Shockley–Queisser limit by optimizing the utilized solar spectrum by reducing thermal relaxation and inaccessible sub-bandgap photons, respectively. Triplet fusion demands precise control of the spin-triplet state population, and requires a sensitizer to efficiently populate the triplet state of an acceptor molecule. In this perspective, we highlight the established field of sensitized upconversion and further examine alternative triplet sensitization routes, including the possibility of bulk solid-state semiconductors as triplet sensitizers, which provide a new avenue for charge transfer-based triplet sensitization rather than excitonic triplet energy transfer.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

1Lee, J., Jadhav, P., Reusswig, P.D., Yost, S.R., Thompson, N.J., Congreve, D.N., Hontz, E., Van Voorhis, T., and Baldo, M.A.: Singlet exciton fission photovoltaics. Acc. Chem. Res. 46, 1300 (2013).10.1021/ar300288eGoogle Scholar
2Smith, M.B. and Michl, J.: Singlet fission. Chem. Rev. 110, 6891 (2010).10.1021/cr1002613Google Scholar
3Hanna, M.C. and Nozik, A.J.: Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006).10.1063/1.2356795Google Scholar
4Congreve, D.N., Lee, J., Thompson, N.J., Hontz, E., Yost, S.R., Reusswig, P.D., Bahlke, M.E., Reineke, S., Voorhis, T.V., and Baldo, M.A.: External quantum efficiency above 100% in a singlet-exciton-fission–based organic photovoltaic cell. Science 340, 334 (2013).10.1126/science.1232994Google Scholar
5Einzinger, M., Wu, T., Kompalla, J.F., Smith, H.L., Perkinson, C.F., Nienhaus, L., Wieghold, S., Congreve, D.N., Kahn, A., Bawendi, M.G., and Baldo, M.A.: Sensitization of silicon by singlet exciton fission in tetracene. Nature 571, 90 (2019).10.1038/s41586-019-1339-4Google Scholar
6Singh-Rachford, T.N. and Castellano, F.N.: Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254, 2560 (2010).10.1016/j.ccr.2010.01.003Google Scholar
7Schmidt, T.W. and Castellano, F.N.: Photochemical upconversion: the primacy of kinetics. J. Phys. Chem. Lett. 5, 4062 (2014).10.1021/jz501799mGoogle Scholar
8Schulze, T.F. and Schmidt, T.W.: Photochemical upconversion: present status and prospects for its application to solar energy conversion. Energy Environ. Sci. 8, 103 (2014).10.1039/C4EE02481HGoogle Scholar
9Shockley, W. and Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961).10.1063/1.1736034Google Scholar
10Rühle, S.: Tabulated values of the Shockley–Queisser limit for single junction solar cells. Solar Energy 130, 139 (2016).Google Scholar
11Zhou, J., Liu, Q., Feng, W., Sun, Y., and Li, F.: Upconversion luminescent materials: advances and applications. Chem. Rev. 115, 395 (2015).10.1021/cr400478fGoogle Scholar
12Ravetz, B.D., Pun, A.B., Churchill, E.M., Congreve, D.N., Rovis, T., and Campos, L.M.: Photoredox catalysis using infrared light via triplet fusion upconversion. Nature 565, 343 (2019).10.1038/s41586-018-0835-2Google Scholar
13Majek, M., Faltermeier, U., Dick, B., Pérez-Ruiz, R., and Jacobi von Wangelin, A.: Application of visible-to-uv photon upconversion to photoredox catalysis: the activation of aryl bromides. Chemistry 21, 15496 (2015).10.1002/chem.201502698Google Scholar
14Häring, M., Pérez-Ruiz, R., von Wangelin, A.J., and Díaz, D.D.: Intragel photoreduction of aryl halides by green-to-blue upconversion under aerobic conditions. Chem. Commun. 51, 16848 (2015).10.1039/C5CC06917CGoogle Scholar
15Deng, R., Qin, F., Chen, R., Huang, W., Hong, M., and Liu, X.: Temporal full-colour tuning through non-steady-state upconversion. Nat. Nanotechnol. 10, 237 (2015).10.1038/nnano.2014.317Google Scholar
16Zhang, K.Y., Zhang, T., Wei, H., Wu, Q., Liu, S., Zhao, Q., and Huang, W.: Phosphorescent iridium(III) complexes capable of imaging and distinguishing between exogenous and endogenous analytes in living cells. Chem. Sci. 9, 7236 (2018).10.1039/C8SC02984AGoogle Scholar
17Mailoa, J.P., Akey, A.J., Simmons, C.B., Hutchinson, D., Mathews, J., Sullivan, J.T., Recht, D., Winkler, M.T., Williams, J.S., Warrender, J.M., Persans, P.D., Aziz, M.J., and Buonassisi, T.: Room-temperature sub-band gap optoelectronic response of hyperdoped silicon. Nat. Commun. 5, 3011 (2014).10.1038/ncomms4011Google Scholar
18Dexter, D.L.: A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836 (1953).10.1063/1.1699044Google Scholar
19Nienhaus, L., Correa-Baena, J.-P., Wieghold, S., Einzinger, M., Lin, T.-A., Shulenberger, K.E., Klein, N.D., Wu, M., Bulović, V., Buonassisi, T., Baldo, M.A., and Bawendi, M.G.: Triplet-sensitization by lead halide perovskite thin films for near-infrared-to-visible upconversion. ACS Energy Lett. 4, 888 (2019).10.1021/acsenergylett.9b00283Google Scholar
20Wieghold, S., Bieber, A.S., VanOrman, Z.A., Daley, L., Leger, M., Correa-Baena, J.-P., and Nienhaus, L.: Triplet sensitization by lead halide pervoskite thin films for efficient solid-state photon upconversion at subsolar fluxes. Matter 1 (2019). doi:10.1016/j.matt.2019.05.026. in press.Google Scholar
21Wieghold, S., Bieber, A.S., VanOrman, Z.A., and Nienhaus, L.: Influence of triplet diffusion on lead halide perovskite-sensitized solid-state upconversion. J. Phys. Chem. Lett. 10, 3806 (2019).10.1021/acs.jpclett.9b01526Google Scholar
22Amemori, S., Sasaki, Y., Yanai, N., and Kimizuka, N.: Near-infrared-to-visible photon upconversion sensitized by a metal complex with spin-forbidden yet strong S0-T1 absorption. J. Am. Chem. Soc. 138, 8702 (2016).10.1021/jacs.6b04692Google Scholar
23Kim, J., Wong, C.Y., and Scholes, G.D.: Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots. Acc. Chem. Res. 42, 1037 (2009).10.1021/ar8002046Google Scholar
24You, Z.-Q. and Hsu, C.-P.: Theory and calculation for the electronic coupling in excitation energy transfer. Int. J. Quantum Chem. 114, 102 (2014).10.1002/qua.24528Google Scholar
25Scholes, G.D. and Rumbles, G.: Excitons in nanoscale systems. Nat. Mater. 5, 683 (2006).10.1038/nmat1710Google Scholar
26Huang, Z., Li, X., Mahboub, M., Hanson, K.M., Nichols, V.M., Le, H., Tang, M.L., and Bardeen, C.J.: Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 15, 5552 (2015).10.1021/acs.nanolett.5b02130Google Scholar
27Okumura, K., Mase, K., Yanai, N., and Kimizuka, N.: Employing core-shell quantum dots as triplet sensitizers for photon upconversion. Chemistry 22, 7721 (2016).10.1002/chem.201600998Google Scholar
28Wu, M., Congreve, D.N., Wilson, M.W.B., Jean, J., Geva, N., Welborn, M., Van Voorhis, T., Bulović, V., Bawendi, M.G., and Baldo, M.A.: Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photonics 10, 31 (2016).Google Scholar
29Kovalenko, M.V., Manna, L., Cabot, A., Hens, Z., Talapin, D.V., Kagan, C.R., Klimov, V.I., Rogach, A.L., Reiss, P., Milliron, D.J., Guyot-Sionnnest, P., Konstantatos, G., Parak, W.J., Hyeon, T., Korgel, B.A., Murray, C.B., and Heiss, W.: Prospects of nanoscience with nanocrystals. ACS Nano 9, 1012 (2015).10.1021/nn506223hGoogle Scholar
30Huang, Z. and Tang, M.L.: Designing transmitter ligands that mediate energy transfer between semiconductor nanocrystals and molecules. J. Am. Chem. Soc. 139, 9412 (2017).Google Scholar
31Geva, N., Shepherd, J.J., Nienhaus, L., Bawendi, M.G., and Van Voorhis, T.: Morphology of passivating organic ligands around a nanocrystal. J. Phys. Chem. C 122, 26267 (2018).10.1021/acs.jpcc.8b08413Google Scholar
32Nienhaus, L., Wu, M., Geva, N., Shepherd, J.J., Wilson, M.W.B., Bulović, V., Van Voorhis, T., Baldo, M.A., and Bawendi, M.G.: Speed limit for triplet-exciton transfer in solid-state pbs nanocrystal-sensitized photon upconversion. ACS Nano 11, 7848 (2017).Google Scholar
33Huang, Z., Li, X., Mahboub, M., Hanson, K.M., Nichols, V.M., Le, H., Tang, M.L., and Bardeen, C.J.: Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 15, 5552 (2015).Google Scholar
34Geva, N., Nienhaus, L., Wu, M., Bulovic, V., Baldo, M.A., Van Voorhis, T., and Bawendi, M.G.: A heterogeneous kinetics model for triplet exciton transfer in solid-state upconversion. J. Phys. Chem. Lett. 10, 3147 (2019).10.1021/acs.jpclett.9b01058Google Scholar
35Mahboub, M., Maghsoudiganjeh, H., Pham, A.M., Huang, Z., and Tang, M.L.: Triplet energy transfer from PbS(Se) nanocrystals to rubrene: the relationship between the upconversion quantum yield and size. Adv. Funct. Mater. 26, 6091 (2016).10.1002/adfm.201505623Google Scholar
36Cheng, Y.Y., Khoury, T., Clady, R.G.C.R., Tayebjee, M.J.Y., Ekins-Daukes, N.J., Crossley, M.J., and Schmidt, T.W.: On the efficiency limit of triplet–triplet annihilation for photochemical upconversion. Phys. Chem. Chem. Phys. 12, 66 (2009).10.1039/B913243KGoogle Scholar
37Haefele, A., Blumhoff, J., Khnayzer, R.S., and Castellano, F.N.: Getting to the (square) root of the problem: how to make noncoherent pumped upconversion linear. J. Phys. Chem. Lett. 3, 299 (2012).10.1021/jz300012uGoogle Scholar
38Monguzzi, A., Mezyk, J., Scotognella, F., Tubino, R., and Meinardi, F.: Upconversion-induced fluorescence in multicomponent systems: steady-state excitation power threshold. Phys. Rev. B 78, 195112 (2008).Google Scholar
39Singh-Rachford, T.N. and Castellano, F.N.: Supra-nanosecond dynamics of a red-to-blue photon upconversion system. Inorg. Chem. 48, 2541 (2009).10.1021/ic802114dGoogle Scholar
40Singh-Rachford, T.N. and Castellano, F.N.: Triplet sensitized red-to-blue photon upconversion. J. Phys. Chem. Lett. 1, 195 (2010).10.1021/jz900170mGoogle Scholar
41Singh-Rachford, T.N. and Castellano, F.N.: Pd(III) phthalocyanine-sensitized triplet−triplet annihilation from rubrene. J. Phys. Chem. A 112, 3550 (2008).10.1021/jp7111878Google Scholar
42Islangulov, R.R., Lott, J., Weder, C., and Castellano, F.N.: Noncoherent low-power upconversion in solid polymer films. J. Am. Chem. Soc. 129, 12652 (2007).10.1021/ja075014kGoogle Scholar
43Kozlov, D.V. and Castellano, F.N.: Anti-Stokes delayed fluorescence from metal–organic bichromophores. Chem. Commun, 2860 (2004).10.1039/B412681EGoogle Scholar
44Islangulov, R.R., Kozlov, D.V., and Castellano, F.N.: Low power upconversion using MLCT sensitizers. Chem. Commun, 3776 (2005).10.1039/b506575eGoogle Scholar
45Parker, C.A., Hatchard, C.G., and John, B.E.: Delayed fluorescence from solutions of anthracene and phenanthrene. Proc. R. Soc. London A 269, 574 (1962).Google Scholar
46Boyde, S., Strouse, G.F., Jones, W.E., and Meyer, T.J.: Intramolecular energy transfer in a chromophoro-quencher complex. J. Am. Chem. Soc. 111, 7448 (1989).Google Scholar
47Murov, S.L., Hug, G.L., and Carmichael, I.: Handbook of Photochemistry (M. Dekker, New York, NY, 1993).Google Scholar
48Henry, B.R. and Siebrand, W.: Organic Molecular Photophysics (Wiley, New York, NY, 1973).Google Scholar
49Shi, J., Izquierdo, M.A., Oh, S., Park, S.Y., Milián-Medina, B., Roca-Sanjuán, D., and Gierschner, J.: Inverted energy gap law for the nonradiative decay in fluorescent floppy molecules: larger fluorescence quantum yields for smaller energy gaps. Org. Chem. Front. 6, 1948 (2019).10.1039/C9QO00259FGoogle Scholar
50Schmidt, T., Gholizadeh, E., Prasad, S., Teh, Z. L., Ishwara, T., Norman, S., Petty, A. J., Anthony, J. E., and Huang, S.: Oxygen-enhanced upconversion of near infrared light from below the silicon band gap. (2019). doi:10.26434/chemrxiv.7834838Google Scholar
51Duan, P., Yanai, N., and Kimizuka, N.: A bis-cyclometalated iridium complex as a benchmark sensitizer for efficient visible-to-UV photon upconversion. Chem. Commun. 50, 13111 (2014).10.1039/C4CC05718JGoogle Scholar
52Singh-Rachford, T.N. and Castellano, F.N.: Low power visible-to-UV upconversion. J. Phys. Chem. A 113, 5912 (2009).10.1021/jp9021163Google Scholar
53Zhao, W. and Castellano, F.N.: Upconverted emission from pyrene and di-tert-butylpyrene using Ir(ppy)3 as triplet sensitizer. J. Phys. Chem. A 110, 11440 (2006).10.1021/jp064261sGoogle Scholar
54Merkel, P.B. and Dinnocenzo, J.P.: Low-power green-to-blue and blue-to-UV upconversion in rigid polymer films. J. Lumin. 129, 303 (2009).Google Scholar
55Deng, F., Blumhoff, J., and Castellano, F.N.: Annihilation limit of a visible-to-UV photon upconversion composition ascertained from transient absorption kinetics. J. Phys. Chem. A 117, 4412 (2013).10.1021/jp4022618Google Scholar
56Huang, Z., Li, X., Yip, B.D., Rubalcava, J.M., Bardeen, C.J., and Tang, M.L.: Nanocrystal size and quantum yield in the upconversion of green to violet light with CdSe and anthracene derivatives. Chem. Mater. 27, 7503 (2015).10.1021/acs.chemmater.5b03731Google Scholar
57Ronchi, A., Brazzo, P., Sassi, M., Beverina, L., Pedrini, J., Meinardi, F., and Monguzzi, A.: Triplet-triplet annihilation based photon up-conversion in hybrid molecule−semiconductor nanocrystal systems. Phys. Chem. Chem. Phys. 21, 12353 (2019).10.1039/C9CP01692AGoogle Scholar
58Mongin, C., Garakyaraghi, S., Razgoniaeva, N., Zamkov, M., and Castellano, F.N.: Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 351, 369 (2016).10.1126/science.aad6378Google Scholar
59Lauth, J., Grimaldi, G., Kinge, S., Houtepen, A.J., Siebbeles, L.D.A., and Scheele, M.: Ultrafast charge transfer and upconversion in zinc β-tetraaminophthalocyanine-functionalized PbS nanostructures probed by transient absorption spectroscopy. Angew. Chem. 129, 14249 (2017).Google Scholar
60Mahboub, M., Maghsoudiganjeh, H., Pham, A.M., Huang, Z., and Tang, M.L.: Triplet energy transfer from PbS(Se) nanocrystals to rubrene: the relationship between the upconversion quantum yield and size. Adv. Funct. Mater. 26, 6091 (2016).Google Scholar
61Huang, Z., Xu, Z., Mahboub, M., Liang, Z., Jaimes, P., Xia, P., Graham, K.R., Tang, M.L., and Lian, T.: Enhanced near-infrared-to-visible upconversion by synthetic control of PbS nanocrystal triplet photosensitizers. J. Am. Chem. Soc. 141, 9769 (2019).10.1021/jacs.9b03385Google Scholar
62Samia, A.C.S., Chen, X., and Burda, C.: Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc. 125, 15736 (2003).10.1021/ja0386905Google Scholar
63Zenkevich, E.I., Sagun, E.I., Knyukshto, V.N., Stasheuski, A.S., Galievsky, V.A., Stupak, A.P., Blaudeck, T., and von Borczyskowski, C.: Quantitative analysis of singlet oxygen (1O2) generation via energy transfer in nanocomposites based on semiconductor quantum dots and porphyrin ligands. J. Phys. Chem. C 115, 21535 (2011).10.1021/jp203987rGoogle Scholar
64Thompson, N.J., Wilson, M.W.B., Congreve, D.N., Brown, P.R., Scherer, J.M., Bischof, T.S., Wu, M., Geva, N., Welborn, M., Voorhis, T.V., Bulović, V., Bawendi, M.G., and Baldo, M.A.: Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals. Nat. Mater. 13, 1039 (2014).Google Scholar
65Tabachnyk, M., Ehrler, B., Gélinas, S., Böhm, M.L., Walker, B.J., Musselman, K.P., Greenham, N.C., Friend, R.H., and Rao, A.: Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals. Nat. Mater. 13, 1033 (2014).10.1038/nmat4093Google Scholar
66Nienhaus, L., Wu, M., Bulović, V., Baldo, M.A., and Bawendi, M.G.: Using lead chalcogenide nanocrystals as spin mixers: a perspective on near-infrared-to-visible upconversion. Dalton Trans. 47, 8509 (2018).10.1039/C8DT00419FGoogle Scholar
67Mase, K., Okumura, K., Yanai, N., and Kimizuka, N.: Triplet sensitization by perovskite nanocrystals for photon upconversion. Chem. Commun. 53, 8261 (2017).10.1039/C7CC03087HGoogle Scholar
68Mahboub, M., Huang, Z., and Tang, M.L.: Efficient infrared-to-visible upconversion with subsolar irradiance. Nano Lett. 16, 7169 (2016).10.1021/acs.nanolett.6b03503Google Scholar
69Liu, Y., Gibbs, M., Puthussery, J., Gaik, S., Ihly, R., Hillhouse, H.W., and Law, M.: Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. Nano Lett. 10, 1960 (2010).10.1021/nl101284kGoogle Scholar
70Wu, M., Jean, J., Bulović, V., and Baldo, M.A.: Interference-enhanced infrared-to-visible upconversion in solid-state thin films sensitized by colloidal nanocrystals. Appl. Phys. Lett. 110, 211101 (2017).10.1063/1.4984136Google Scholar
71Luo, X., Lai, R., Li, Y., Han, Y., Liang, G., Liu, X., Ding, T., Wang, J., and Wu, K.: Triplet energy transfer from CsPbBr3 nanocrystals enabled by quantum confinement. J. Am. Chem. Soc. 141, 4186 (2019).Google Scholar
72Han, Y., Luo, X., Lai, R., Li, Y., Liang, G., and Wu, K.: Visible-light-driven sensitization of naphthalene triplets using quantum-confined CsPbBr3 nanocrystals. J. Phys. Chem. Lett. 10, 1457 (2019).10.1021/acs.jpclett.9b00597Google Scholar
73Younts, R., Duan, H.-S., Gautam, B., Saparov, B., Liu, J., Mongin, C., Castellano, F.N., Mitzi, D.B., and Gundogdu, K.: Efficient generation of long-lived triplet excitons in 2D hybrid perovskite. Adv. Mater. 29, 1604278 (2017).Google Scholar
74Yang, Y., Yang, M., Li, Z., Crisp, R., Zhu, K., and Beard, M.C.: Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: influence of exciton binding energy. J. Phys. Chem. Lett. 6, 4688 (2015).10.1021/acs.jpclett.5b02290Google Scholar
75Galkowski, K., Mitioglu, A., Miyata, A., Plochocka, P., Portugall, O., Eperon, G.E., Wang, J.T.-W., Stergiopoulos, T., Stranks, S.D., Snaith, H.J., and Nicholas, R.J.: Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ. Sci. 9, 962 (2016).10.1039/C5EE03435CGoogle Scholar
76Miyata, A., Mitioglu, A., Plochocka, P., Portugall, O., Wang, J.T.-W., Stranks, S.D., Snaith, H.J., and Nicholas, R.J.: Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11, 582 (2015).10.1038/nphys3357Google Scholar
77Tress, W.: Perovskite solar cells on the way to their radiative efficiency limit—insights into a success story of high open-circuit voltage and low recombination. Adv. Energy Mater. 7, 1602358 (2017).10.1002/aenm.201602358Google Scholar
78Nienhaus, L., Geva, N., Correa-Baena, J., Wu, M., Wieghold, S., Bulović, V., Voorhis, T. V., Baldo, M. A., Buonassisi, T., and Bawendi, M. G.: In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC), Waikoloa Village, Hawaii; 2018; pp. 3698–3702.Google Scholar
79Reusswig, P.D., Congreve, D.N., Thompson, N.J., and Baldo, M.A.: Enhanced external quantum efficiency in an organic photovoltaic cell via singlet fission exciton sensitizer. Appl. Phys. Lett. 101, 113304 (2012).10.1063/1.4752445Google Scholar
80Kafle, T.R., Kattel, B., Lane, S.D., Wang, T., Zhao, H., and Chan, W.-L.: Charge transfer exciton and spin flipping at organic–transition-metal dichalcogenide interfaces. ACS Nano 11, 10184 (2017).10.1021/acsnano.7b04751Google Scholar
81Kafle, T.R., Kattel, B., Yao, P., Zereshki, P., Zhao, H., and Chan, W.-L.: Effect of the interfacial energy landscape on photoinduced charge generation at the ZnPc/MoS2 interface. J. Am. Chem. Soc. 141, 11328 (2019).10.1021/jacs.9b05893Google Scholar