Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T07:28:28.987Z Has data issue: false hasContentIssue false

Peptide-mediated binding of gold nanoparticles to E. coli for enhanced microbial fuel cell power generation

Published online by Cambridge University Press:  20 June 2019

Justin P. Jahnke*
Affiliation:
Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA
Hong Dong
Affiliation:
Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA
Deborah A. Sarkes
Affiliation:
Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA
James J. Sumner
Affiliation:
Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA
Dimitra N. Stratis-Cullum
Affiliation:
Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA
Margaret M. Hurley
Affiliation:
Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA
*
Address all correspondence to Justin P. Jahnke at [email protected]
Get access

Abstract

The authors demonstrate that gold-binding peptides displayed on the outer membrane of Escherichia coli enhance bioelectrochemical charge transfer by binding gold nanoparticles. Microbial fuel cells were run with different gold-binding peptides displayed and with different nanoparticle sizes, and the results were correlated with transmission electron microscopy (TEM) imaging of nanoparticle binding. When a gold-binding peptide is displayed and 5 nm gold nanoparticles are present, up to 4× power generation over E. coli not displaying a gold-binding peptide is observed. While an enhanced current is observed using the previously published M6G9, the largest enhancement is observed when a new longer peptide named M9G18 is used.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Logan, B.E., Wallack, M.J., Kim, K.-Y., He, W., Feng, Y., and Saikaly, P.E.: Assessment of microbial fuel cell configurations and power densities. Environ. Sci. Technol. Lett. 2, 206 (2015).Google Scholar
2.Venkata Mohan, S., Velvizhi, G., Annie Modestra, J., and Srikanth, S.: Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renew. Sustain. Energy Rev. 40, 779 (2014).Google Scholar
3.Tremblay, P.-L. and Zhang, T.: Electrifying microbes for the production of chemicals. Front. Microbiol 6, 201 (2015).Google Scholar
4.Fraiwan, A. and Choi, S.: A stackable, two-chambered, paper-based microbial fuel cell. Biosens. Bioelectron. 83, 27 (2016).Google Scholar
5.Tschirhart, T., Kim, E., McKay, R., Ueda, H., Wu, H.-C., Pottash, A.E., Zargar, A., Negrete, A., Shiloach, J., Payne, G.F., and Bentley, W.E.: Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling. Nat. Commun. 8, 14030 (2017).Google Scholar
6.Jahnke, J.P., Bazan, G.C., and Sumner, J.J.: Effect of modified phospholipid bilayers on the electrochemical activity of a membrane-spanning conjugated oligoelectrolyte. Langmuir 31, 11613 (2015).Google Scholar
7.Du, J., Catania, C., and Bazan, G.C.: Modification of abiotic–biotic interfaces with small molecules and nanomaterials for improved bioelectronics. Chem. Mater. 26, 686697 (2014).Google Scholar
8.Sund, C., McMasters, S., Crittenden, S., Harrell, L., and Sumner, J.: Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Appl. Microbiol. Biotechnol. 76, 561 (2007).Google Scholar
9.Popov, A.L., Kim, J.R., Dinsdale, R.M., Esteves, S.R., Guwy, A.J., and Premier, G.C.: The effect of physico-chemically immobilized methylene blue and neutral red on the anode of microbial fuel cell. Biotechnol. Bioprocess Eng. 17, 361 (2012).Google Scholar
10.Fan, Y., Xu, S., Schaller, R., Jiao, J., Chaplen, F., and Liu, H.: Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells. Biosens. Bioelectron. 26, 1908 (2011).Google Scholar
11.Xu, S., Liu, H., Fan, Y., Schaller, R., Jiao, J., and Chaplen, F.: Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes. Appl. Microbiol. Biotechnol. 93, 871 (2012).Google Scholar
12.Chen, M., Zhou, X., Liu, X., Zeng, R.J., Zhang, F., Ye, J., and Zhou, S.: Facilitated extracellular electron transfer of Geobacter sulfurreducens biofilm with in situ formed gold nanoparticles. Biosens. Bioelectron 108, 20 (2018).Google Scholar
13.Jiang, X., Hu, J., Lieber, A.M., Jackan, C.S., Biffinger, J.C., Fitzgerald, L.A., Ringeisen, B.R., and Lieber, C.M.: Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. Nano Lett. 14, 6737 (2014).Google Scholar
14.Catania, C., Ajo-Franklin, C.M., and Bazan, G.C.: Membrane permeabilization by conjugated oligoelectrolytes accelerates whole-cell catalysis. RSC Adv. 6, 100300 (2016).Google Scholar
15.Jahnke, J.P., Cornejo, J.A., Sumner, J.J., Schuler, A.J., Atanassov, P., and Ista, L.K.: Conjugated gold nanoparticles as a tool for probing the bacterial cell envelope: the case of Shewanella oneidensis MR-1. Biointerphases 11, 011003 (2016).Google Scholar
16.Saha, K., Agasti, S.S., Kim, C., Li, X., and Rotello, V.M.: Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112, 2739 (2012).Google Scholar
17.Petrova, O.E. and Sauer, K.: Sticky situations: key components that control bacterial surface attachment. J. Bacteriol. 194, 2413 (2012).Google Scholar
18.Naik, R.R., Stringer, S.J., Agarwal, G., Jones, S.E., and Stone, M.O.: Biomimetic synthesis and patterning of silver nanoparticles. Nat. Mater. 1, 169 (2002).Google Scholar
19.Dong, H., Sarkes, D.A., Rice, J.J., Hurley, M.M., Fu, A.J., and Stratis-Cullum, D.N.: Living bacteria–nanoparticle hybrids mediated through surface-displayed peptides. Langmuir 34, 5837 (2018).Google Scholar
20.Hou, H., Chen, X., Thomas, A.W., Catania, C., Kirchhofer, N.D., Garner, L.E., Han, A., and Bazan, G.C.: Conjugated oligoelectrolytes increase power generation in E. coli microbial fuel cells. Adv. Mater. 25, 1593 (2013).Google Scholar
21.Hou, H., Li, L., Cho, Y., de Figueiredo, P., and Han, A.: Microfabricated microbial fuel cell arrays reveal electrochemically active microbes. PLoS ONE 4, e6570 (2009).Google Scholar
22.Zheng, K., Setyawati, M.I., Leong, D.T., and Xie, J.: Antimicrobial gold nanoclusters. ACS Nano 11, 6904 (2017).Google Scholar
Supplementary material: File

Jahnke et al. supplementary material

Jahnke et al. supplementary material 1

Download Jahnke et al. supplementary material(File)
File 226.8 KB