Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T10:46:27.907Z Has data issue: false hasContentIssue false

Observation and characterization of memristive silver filaments in amorphous zinc-tin-oxide

Published online by Cambridge University Press:  13 August 2018

Hiep N. Tran*
Affiliation:
School of Engineering, RMIT University, GPO Box 2476V, Melbourne VIC 3001, Australia
Thomas J. Raeber
Affiliation:
School of Science, RMIT University, GPO Box 2476V, Melbourne VIC 3001, Australia
Zijun C. Zhao
Affiliation:
School of Physics, The University of Sydney, NSW 2006, Sydney, Australia
David R. McKenzie
Affiliation:
School of Physics, The University of Sydney, NSW 2006, Sydney, Australia
Anthony S. Holland
Affiliation:
School of Engineering, RMIT University, GPO Box 2476V, Melbourne VIC 3001, Australia
Dougal G. McCulloch
Affiliation:
School of Science, RMIT University, GPO Box 2476V, Melbourne VIC 3001, Australia
Billy J. Murdoch
Affiliation:
School of Science, RMIT University, GPO Box 2476V, Melbourne VIC 3001, Australia
Jim G. Partridge
Affiliation:
School of Science, RMIT University, GPO Box 2476V, Melbourne VIC 3001, Australia
*
Address all correspondence to Hiep N. Tran at [email protected]
Get access

Abstract

Lateral memristors consisting of planar Ag electrodes (with sub-micrometer separation) supported on thin films of amorphous zinc-tin-oxide have been characterized. After an initial filament-forming process, each device exhibited volatile, resistive switching. In the low resistance state, the transport mechanism and conductance depended on prior activity and on the imposed current limit, mimicking biologic synaptic plasticity. Microscopic observations performed on each device revealed nanoscale filaments between the electrodes. These filaments were subject to Rayleigh instability and exhibited relaxation times determined by their effective radii. The relaxation times and on:off resistance ratios suggest suitability for threshold switching selector devices.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nomura, K., Ohta, H., Takagi, A., Kamiy, T., Hirano, M., and Hosono, H.: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488 (2004).Google Scholar
2.Nomura, K., Takagi, A., Kamiya, T., Ohta, H., Hirano, M., and Hosono, H.: Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn. J. Appl. Phys. 45, 4303 (2006).Google Scholar
3.Borghetti, J., Li, Z., Straznicky, J., Li, X., Ohlberg, D.A., Wu, W., Stewart, D.R., and Williams, R.S.: A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proc. Natl. Acad. Sci. USA 106, 1699 (2009).Google Scholar
4.Dang, G.T., Kawaharamura, T., Furuta, M., and Allen, M.W.: Zinc tin oxide metal semiconductor field effect transistors and their improvement under negative bias (illumination) temperature stress. Appl. Phys. Lett. 110, 073502 (2017).Google Scholar
5.McDowell, M.G., Sanderson, R.J., and Hill, I.G.: Combinatorial study of zinc tin oxide thin-film transistors. Appl. Phys. Lett. 92, 013502 (2008).Google Scholar
6.Murdoch, B.J., McCulloch, D.G., and Partridge, J.G.: Relationship between microstructure and electronic properties of energetically deposited zinc tin oxide. Appl. Phys. Express 9, 065501 (2016).Google Scholar
7.Elzwawi, S., Kim, H.S., Lynam, M., Mayes, E.L.H., McCulloch, D.G., Allen, M.W., and Partridge, J.G.: Stable n-channel metal-semiconductor field effect transistors on ZnO films deposited using a filtered cathodic vacuum arc. Appl. Phys. Lett. 101, 243508 (2012).Google Scholar
8.Rembert, T., Battaglia, C., Anders, A., and Javey, A: Room temperature oxide deposition approach to fully transparent, all-oxide-thin film transistors. Adv. Mater. 27, 6090 (2015).Google Scholar
9.Murdoch, B.J., Ganesan, R., McKenzie, D.R., Bilek, M.M.M., McCulloch, D.G., and Partridge, J.G.: Influence of nitrogen-related defects on optical and electrical behaviour in HfO2− xNx deposited by high-power impulse magnetron sputtering. Appl. Phys. Lett. 107, 112903 (2015).Google Scholar
10.Tran, H.N., Mayes, E.L.H., Murdoch, B.J., McCulloch, D.G., McKenzie, D.R., Bilek, M.M.M., Holland, A.S., and Partridge, J.G.: Codeposition of amorphous zinc tin oxide using high power impulse magnetron sputtering: characterization and doping. Semicond. Sci. Technol. 32, 045013 (2017).Google Scholar
11.Murdoch, B.J., McCulloch, D.G., and Partridge, J.G.: Synaptic plasticity and oscillation at zinc tin oxide/silver oxide interfaces. J. Appl. Phys. 121, 054104 (2017).Google Scholar
12.Elzwawi, S., Hyland, A., Lynam, M., Partridge, J.G., McCulloch, D.G., and Allen, M.W.: Effect of Schottky gate type and channel defects on the stability of transparent ZnO MESFETs. Semicond. Sci. Technol. 30, 024008 (2015).Google Scholar
13.Wang, Z., Rao, M., Midya, R., Joshi, S., Jiang, H., Lin, P., Song, W., Asapu, S., Zhuo, Y., Li, C., Wu, H., Xia, Q., and Joshua Yang, J.: Threshold switching of Ag or Cu in dielectrics: materials, mechanism, and applications. Adv. Funct. Mater. 28, 1704862 (2018).Google Scholar
14.Longo, E., Cavalcante, L.S., Volanti, D.P., Gouveia, A.F., Longo, V.M., Varela, J.A., Orlandi, M.O., and Andrés, J.: Direct in situ observation of the electron-driven synthesis of Ag filaments on α-Ag2WO4 crystals. Sci. Rep. 3, 1676 (2013).Google Scholar
15.Wang, Z., Joshi, S., Savel'ev, S.E., Jiang, H., Midya, R., Lin, P., Hu, M., Ge, N., Strachan, J.P., Li, Z., Wu, Q., Barnell, M., Li, G-L., Xin, H.L., Williams, R.S., Xia, Q., and Yang, J.J.: Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101 (2017).Google Scholar
16.Wang, Z.Q., Xu, H.Y., Li, X.H., Yu, H., Liu, Y.C., and Zhu, X.J.: Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater. 22, 2759 (2012).Google Scholar
17.Murali, S., Rajachidambaram, J.S., Han, S.Y., Chang, C.H., Herman, G.S., and Conley, J.F.: Resistive switching in zinc–tin-oxide. Solid State Electron. 79, 248 (2013).Google Scholar
18.Rajachidambaram, J.S., Murali, S., Conley, J.F., Golledge, S.L., and Herman:, G.S. Bipolar resistive switching in an amorphous zinc tin oxide memristive device. J. Vac. Sci. Technol. B 31, 01A104 (2013).Google Scholar
19.Mayes, E.L.H., Partridge, J.G., Field, M.R., McCulloch, D.G., Durbin, S.M., Kim, H., and Allen, M.W.: The interface structure of high performance ZnO Schottky diodes. Physica B Condens. Matter 407, 2867 (2012).Google Scholar
20.Chiquito, A.J., Amorim, C.A., Berengue, O.M., Araujo, L.S., Bernardo, E.P., and Leite, E.R.: Back-to-back Schottky diodes: the generalization of the diode theory in analysis and extraction of electrical parameters of nanodevices. J. Phys. Condens. Matter 24, 225303 (2012).Google Scholar
21.Yaqoob, F. and Huang, M.: Effects of high-dose hydrogen implantation on defect formation and dopant diffusion in silver implanted ZnO crystals. J. Appl. Phys. 120, 045101 (2016).Google Scholar
22.Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. 18, 293 (1951).Google Scholar
23.Tappertzhofen, S. and Hofmann, S.: Embedded nanoparticle dynamics and their influence on switching behaviour of resistive memory devices. Nanoscale 9, 17494 (2017).Google Scholar
24.Prada, S., Rosa, M., Giordano, L., Di Valentin, C., and Pacchioni, G.: Density functional theory study of TiO2/Ag interfaces and their role in memristor devices. Phys. Rev. B 83, 245314 (2011).Google Scholar
25.Toimil Molares, M.E., Balogh, A.G., Cornelius, T.W., Neumann, R., and Trautmann, C.: Fragmentation of nanowires driven by Rayleigh instability. Appl. Phys. Lett. 85, 5337 (2004).Google Scholar
26.Hsiung, C.P., Liao, H-W, Gan, J-Y, Wu, T-B, Hwang, J-C, Chen, F., and Tsai, M-J: Formation and instability of silver nanofilament in Ag-based programmable metallization cells. ACS Nano 4, 5414 (2010).Google Scholar
27.Zhao, X., Xu, H., Wang, Z., Zhang, L., Ma, J., and Liu, Y.: Nonvolatile/volatile behaviours and quantized conductance observed in resistive switching memory based on amorphous carbon. Carbon. N. Y. 91, 38 (2015).Google Scholar
28.Zhu, X., Du, C., Jeong, Y., and Lu, W.D.: Emulation of synaptic metaplasticity in memristors. Nanoscale 9, 45 (2017).Google Scholar
29.Markram, H., Pikus, D., Gupta, A., and Tsodyks, M.: Potential for multiple mechanisms, phenomena and algorithms for synaptic plasticity at single synapses. Neuropharmacology 37, 489 (1998).Google Scholar
30.La Barbera, S., Vincent, A.F., Vuillaume, D., Querlioz, D., and Alibart, F.: Interplay of multiple synaptic plasticity features in filamentary memristive devices for neuromorphic computing. Sci. Rep. 6, 39216 (2016).Google Scholar
Supplementary material: File

Tran et al. supplementary material

Tran et al. supplementary material 1

Download Tran et al. supplementary material(File)
File 486.3 KB