Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T07:45:08.072Z Has data issue: false hasContentIssue false

Nanohybrid-sensitized photoelectrochemical cells for solar-to-hydrogen conversion

Published online by Cambridge University Press:  13 August 2018

Hiroaki Tada*
Affiliation:
Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
*
Address all correspondence to Hiroaki Tada at [email protected]
Get access

Abstract

This article reviews the semiconductor and metal-based nanohybrid-sensitized photoelectrochemical (PEC) cells for hydrogen generation from water. The nanoscale hybridization of sensitizers in the photoanode can enhance light harvesting, interfacial charge transfer, charge separation, and induce a catalytic effect in dependence on the kind of the components and interfacial junction state. Subsequent to the introduction, second and third sections present the basic structure and design of the nanohybrid-sensitized PEC cell. Fourth section deals with the effect of the interfacial bond between quantum dots and TiO2 on the electron injection process. Fifth section mainly describes the formation of heteroepitaxial junction between the components of nanohybrids. In the sixth section, the state-of-the-art nanohybrid-sensitized PEC cells are treated with a particular emphasis placed on the interface state.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Osterloh, F. E.: Inorganic materials as catalysts for photoelectrochemical splitting of water. Chem. Mater. 20, 35 (2008).Google Scholar
2.Kudo, A. and Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009).Google Scholar
3.Tachibana, Y., Vayssieres, L., and Durrant, J. R.: Artificial photosynthesis for water-splitting. Nat. Photonics 6, 511 (2012).Google Scholar
4.Hisatomi, T., Kubota, J., and Domen, K.: Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520 (2014).Google Scholar
5.Fabian, D. M., Hu, S., Singh, N., Houle, F. A., Hisatomi, T., Domen, K., Osterlohf, F. E., and Ardo, S.: Particle suspension reactors and materials for solar-driven water splitting. Energy Environ. Sci. 8, 2825 (2015).Google Scholar
6.Lianos, P.: Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity abd hydrogen. Appl. Catal. B Environ. 210, 235 (2017).Google Scholar
7.Sahai, S., Ikram, A., Rai, S., Shrivastav, R., Dass, S., and Satsangi, V. R.: Quantum dots sensitization for photoelectrochemical generation of hydrogen: a review. Renewable Sustainable Energy Rev. 68, 19 (2017).Google Scholar
8.Weller, H.: Colloidal semiconductor Q-particles: chemistry in the transition region between solid and molecular states. Angew. Chem. Int. Ed. Engl. 32, 43 (1993).Google Scholar
9.Tada, H., Fujishima, M., and Kobayashi, H.: Photodeposition of metal sulfide quantum dots on titanium(IV) dioxide and the applications to solar energy conversion. Chem. Soc. Rev. 40, 4232 (2011).Google Scholar
10.Frese, K. W. and Canfiled, D. G.: Adsorption of hydroxide and sulfide ions on single-crystal n-cadmium selenide electrodes. J. Electrochem. Soc. 131, 2614 (1984).Google Scholar
11.Yu, W. W., Qu, L., Guo, W., and Peng, X.: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854 (2003).Google Scholar
12.Jasieniak, J., Smith, L., van Embden, J., and Malvaney, P.: Re-examination of the size-dependent absorption of CdSe quantum dots. J. Phys. Chem. C 113, 19468 (2009).Google Scholar
13.Diguna, L. J., Shen, Q., Kobayashi, J., and Toyoda, T.: High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl. Phys. Lett. 91, 023116 (2007).Google Scholar
14.Kubacka, A., Fernandez-Garcia, M., and Colon, G.: Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 112, 1555 (2012).Google Scholar
15.Ueno, K. and Misawa, H.: Surface plasmon-enhanced photochemical reactions. J. Photochem. Photobiol. C 15, 31 (2013).Google Scholar
16.Lang, X., Chen, X., and Zhao, J.: Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev. 43, 473 (2014).Google Scholar
17.Panayotov, D. A. and Morris, J. R.: Surface chemistry of Au/TiO2: thermally and photolytically activated reactions. Surf. Sci. Rep. 71, 77 (2016).Google Scholar
18.Kowalska, E., Abe, R., and Ohtani, B.: Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis. Chem. Commun. 2009, 241 (2009).Google Scholar
19.Naya, S., Inoue, A., and Tada, H.: Self-assembled heterosupramolecular visible light photocatalyst consisting of gold nanoparticle-loaded titanium(IV) dioxide and surfactant. J. Am. Chem. Soc. 132, 6292 (2010).Google Scholar
20.Ide, Y., Matsuoka, M., and Ogawa, M.: Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate. J. Am. Chem. Soc. 132, 16762 (2010).Google Scholar
21.Zheng, Z., Huang, B., Qin, X., Zhang, X., Dai, Y., Wei, J., and Whangbo, M.-H.: Facile in situ synthesis of visible-light plasmonic photocatalysts M–TiO2 (M=Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J. Mater. Chem. 21, 9079 (2011).Google Scholar
22.Kimura, K., Naya, S., Jin-nouchi, Y., and Tada, H.: TiO2 crystal form-dependence of the Au/TiO2 plasmon photocatalyst's activity. J. Phys. Chem. C 116, 7111 (2012).Google Scholar
23.Tsukamoto, D., Shiraishi, Y., Sugano, Y., Ichikawa, S., Tanaka, S., and Hirai, T.: Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J. Am. Chem. Soc. 134, 6309 (2012).Google Scholar
24.Naya, S., Niwa, T., Kume, T., and Tada, H.: Visible-light-induced electron transport from small to large nanoparticles in bimodal gold nanoparticle-loaded titanium(IV) oxide. Angew. Chem. Int. Ed. 53, 7305 (2014).Google Scholar
25.Liu, Z., Hou, W., Pavaskar, P., Aykol, M., and Cronin, S. B.: Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11, 1111 (2011).Google Scholar
26.Thimsen, E., Formal, F. L., Grätzel, M., and Warren, S. C.: Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. Nano Lett. 11, 35 (2011).Google Scholar
27.Zhong, Y., Ueno, K., Mori, Y., Shi, X., Oshikiri, T., Murakoshi, K., Inoue, H., and Misawa, H.: Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy. Angew. Chem. Int. Ed. 53, 10350 (2014).Google Scholar
28.Meissner, D., Memming, R., Kastening, B., and Bahnemann, D.: Fundamental problems of water splitting as cadmium sulfide. Chem. Phys. Lett. 127, 419 (1986).Google Scholar
29.Tachibana, Y., Akiyama, H. Y., Ohtsuka, Y., Torimoto, T., and Kuwabata, S.: CdS quantum dots sensitized TiO2 sandwich type photoelectrochemical solar cells. Chem. Lett. 36, 88 (2007).Google Scholar
30.Licht, S.: Aqueous solubilities products and standard oxidation-reduction potentials of the metal sulfides. J. Electrochem. Soc. 135, 2971 (1988).Google Scholar
31.Bühler, N., Meier, K., and Beber, J.-F.: Photochemical hydrogen production with cadmium sulfide suspensions. J. Phys. Chem. 88, 3261 (1984).Google Scholar
32.Gonzalez-Pedro, V., Zarazua, I., Barea, E. M., Fabregat-Santiago, F., de la Rosa, E., Mora-Sero, I., and Gimenez, S.: Harnessing infrared photons for photoelectrochemical hydrogen generation. A PbS quantum dot based “quasi-artificial leaf”. J. Phys. Chem. C 118, 891 (2014).Google Scholar
33.Jin-nouchi, Y., Naya, S., and Tada, H.: Quantum dot-sensitized solar cell using a photoanode prepared by in situ photodeposition of CdS on nanocrystalline TiO2 films. J. Phys. Chem. C 114, 16837 (2010).Google Scholar
34.Mora-Seró, I., Giménez, S., Fabregat-Santiago, F., Gómez, R., Shen, Q., Toyoda, T., and Bisquert, J.: Recombination in quantum dot sensitized solar cells. Acc. Chem. Res. 42, 1848 (2009).Google Scholar
35.Serpone, N., Bergarello, E., and Grätzel, M.: Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions. J. Chem. Soc. Chem. Commun. 1984, 342 (1984).Google Scholar
36.Lide, D. R., ed.: Handbook of Chemistry and Physics, 83rd edn. CRC Press, New York, 2002.Google Scholar
37.Yoshii, M., Kobayashi, H., and Tada, H.: Sub-bandgap excitation-induced electron injection from CdSe quantum dots to TiO2 in the directly coupled system. ChemPhysChem 16, 1846 (2015).Google Scholar
38.Fujishima, M., Nakabayashi, Y., Takayama, K., Kobayashi, H., and Tada, H.: High coverage formation of CdS quantum dots on TiO2 by the photocatalytic growth of preformed seeds. J. Phys. Chem. C 120, 17365 (2016).Google Scholar
39.Lee, Y.-L., Chi, C.-F., and Liau, S.-Y.: CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectrochemical cell. Chem. Mater. 22, 922 (2010).Google Scholar
40.Seol, M., Kim, H., Kim, W., and Yong, K.: Highly efficient photoelectrochemical hydrogen generation using a ZnO nanowire array and a CdSe/CdS co-sensitizer. Electrochem. Commun. 12, 1416 (2010).Google Scholar
41.Kim, H. and Yong, K.: Highly efficient photoelectrochemical hydrogen generation using a quantum dot coupled hierarchical ZnO nanowires array. ACS Appl. Mater. Interfaces 5, 13258 (2013).Google Scholar
42.Wang, G., Yang, X., Qian, F., Zhang, J. Z., and Li, Y.: Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett. 10, 1088 (2010).Google Scholar
43.Trevisan, R., Rodenas, P., Gonzalez-Pedro, V., Sima, C., Sanchez, R. S., Barea, E. M., Mora-Sero, I., Fabregat-Santiago, F., and Gimenez, S.: Harnessing infrared photons for photoelectrochemical hydrogen generation. A PbS quantum dot based “quasi-artificial leaf”. J. Phys. Chem. Lett. 4, 141 (2013).Google Scholar
44.Hodes, G.: Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition. Phys. Chem. Chem. Phys. 9, 2181 (2007).Google Scholar
45.Albero, J., Clifford, J. N., and Palomares, E.: Quantum dot based molecular solar cells. Coord. Chem. Rev. 263–264, 53 (2014).Google Scholar
46.Jin, L., AlOtaibi, B., Benetti, D., Li, S., Zhao, H., Mi, Z., Vomiero, A., and Rosei, F.: Near-infrared colloidal quantum dots for efficient and durable photoelectrochemical solar-driven hydrogen production. Adv. Sci. 3, 1500345 (2016).Google Scholar
47.Qiu, Q., Wang, P., Xu, L., Wang, D., Lin, Y., and Xie, T.: Photoelectrical properties of CdS/CdSe core/shell QDs modified anatase TiO2 nanowires and their application for solar cells. Phys. Chem. Chem. Phys. 19, 15724 (2017).Google Scholar
48.Kozytskiy, A. V., Stroyuk, A. L., Kuchmy, S. Y., Streltsov, E. A., Skorik, N. A., and Mskalyuk, V. O.: Effect of the method of preparation of ZnO/CdS and TiO2/CdS film nanoheterostructures on their photoelectrochemical properties. Theor. Exp. Chem. 49, 165 (2013).Google Scholar
49.Ding, X., Li, Y., Zhao, J., Zhu, Y., Li, Y., Deng, W., and Wang, C.: Enhanced photocatalytic H2 evolution over CdS/Au/g-C3N4 composite photocatalyts under visible-light irradiation. APL Mater. 3, 104410 (2015).Google Scholar
50.Kitazono, K., Akashi, R., Fujiwara, K., Akita, A., Naya, S., Fujishima, M., and Tada, H.: Photocatalytic synthesis of CdS(core)-CdSe(shell) quantum dots with a heteroepitaxial junction on TiO2: photoelectrochemical hydrogen generation from water. ChemPhysChem 18, 2840 (2017).Google Scholar
51.Fujii, M., Nagasuna, K., Fujishima, M., Akita, T., and Tada, H.: Photodeposition of CdS quantum dots on TiO2: preparation, characterization, and reaction mechanism. J. Phys. Chem. C 113, 16711 (2009).Google Scholar
52.Fujishima, M., Tanaka, K., Sakami, N., Wada, M., Morii, K., Hattori, T., Sumida, Y., and Tada, H.: Photocatalytic current doubling-induced generation of uniform selenium and cadmium selenide quantum dots on titanium(IV) oxide. J. Phys. Chem. C 118, 8917 (2014).Google Scholar
53.Tsubota, S., Haruta, M., Kobayashi, T., Ueda, A., and Nakahara, Y.: Preparation of highly dispersed gold on titanium and magnesium oxide. In Preparation of Catalysts V, Poncelet, G., Jacobs, P. A., Grange, P. and Delmon, B., eds.; Elsevier: Amsterdam, 1991, pp. 695704.Google Scholar
54.Tada, H., Kiyonaga, T., and Naya, S.: Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium(IV) dioxide. Chem. Soc. Rev. 38, 1849 (2009).Google Scholar
55.Tada, H., Suzuki, F., Ito, S., Kawahara, T., Akita, T., Tanaka, K., and Kobayashi, H.: Au-core/Pt-shell bimetallic cluster-loaded TiO2. 1. Adsorption of organic compound. J. Phys. Chem. B 106, 8714 (2002).Google Scholar
56.Negishi, R., Naya, S., Kobayashi, H., and Tada, H.: Gold(core)-lead(shell) nanoparticle-loaded titanium(IV) oxide prepared by underpotential photodeposition: plasmonic water oxidation. Angew. Chem. Int. Ed. 56, 10347 (2017).Google Scholar
57.Mulvaney, P., Giersig, M., and Henglein:, A. Surface chemistry of colloidal gold: deposition of lead and accompanying optical effects. J. Phys. Chem. 96, 10419 (1992).Google Scholar
58.Grätzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).Google Scholar
59.Tachibana, Y., Umekita, K., Otsuka, Y., and Kuwabata, S.: Performance improvement of CdSe quantum dots sensitized TiO2 solar cells by introducing a dense TiO2 blocking layer. J. Phys. D 41, 102002 (2008).Google Scholar
60.Brus, L.: Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555 (1986).Google Scholar
61.Naya, S., Kume, T., Akashi, R., Fujishima, M., and Tada, H.: Red-light-driven water splitting by Au(core)-CdS(shell) half-cut nanoegg with heteroepitaxial junction. J. Am. Chem. Soc. 140, 1251 (2018).Google Scholar
62.Tian, Y. and Tatsuma, T.: Mechanism and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632 (2005).Google Scholar
63.Du, L., Furube, A., Yamamoto, K., Hara, K., Katoh, R., and Tachiya, M.: Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems: dependence on TiO2 particle size. J. Phys. Chem. C 113, 6454 (2009).Google Scholar
64.Zaban, A., Greenshtein, M., and Bisquert, J.: Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem 4, 859 (2003).Google Scholar