Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T10:53:29.404Z Has data issue: false hasContentIssue false

Monitoring the adaptive cell response to hyperosmotic stress by organic devices

Published online by Cambridge University Press:  08 May 2017

Pasquale D'Angelo*
Affiliation:
Institute of Materials for Electronics and Magnetism, National Research Council, P.co Area delle Scienze 37/A, 43124 Parma, Italy
Giuseppe Tarabella
Affiliation:
Institute of Materials for Electronics and Magnetism, National Research Council, P.co Area delle Scienze 37/A, 43124 Parma, Italy
Agostino Romeo
Affiliation:
Institute of Materials for Electronics and Magnetism, National Research Council, P.co Area delle Scienze 37/A, 43124 Parma, Italy
Angela Giodice
Affiliation:
Institute of Materials for Electronics and Magnetism, National Research Council, P.co Area delle Scienze 37/A, 43124 Parma, Italy
Simone Marasso
Affiliation:
Institute of Materials for Electronics and Magnetism, National Research Council, P.co Area delle Scienze 37/A, 43124 Parma, Italy Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
Matteo Cocuzza
Affiliation:
Institute of Materials for Electronics and Magnetism, National Research Council, P.co Area delle Scienze 37/A, 43124 Parma, Italy Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
Francesca Ravanetti
Affiliation:
Department of Veterinary Sciences, University of Parma, Via del Taglio, 10, 43126 Parma, Italy
Antonio Cacchioli
Affiliation:
Department of Veterinary Sciences, University of Parma, Via del Taglio, 10, 43126 Parma, Italy
Pier Giorgio Petronini
Affiliation:
Unit of Experimental Oncology, Department of Clinical and Experimental Medicine, University of Parma, Plesso Biotecnologico Integrato, Via Volturno, 39—Palazzina D 10 piano, 43125 Parma, Italy
Salvatore Iannotta
Affiliation:
Institute of Materials for Electronics and Magnetism, National Research Council, P.co Area delle Scienze 37/A, 43124 Parma, Italy
*
Address all correspondence to Pasquale D'Angelo at [email protected]
Get access

Abstract

Cellular activity upon osmotic stress is related to the occurrence of several disease conditions. The real-time monitoring of the cell response to this kind of stress can give insight into the comprehension of mechanisms involved in cellular shrinkage. Currently the dynamics of the osmotic stress is studied using dedicated and tricky methodologies, not suited to the in vivo testing. We show that a disposable electronic device is very effective for studying the early stage of the osmotic stress induced on human lung adenocarcinoma cells, A549, by a hyperosmotic environment. Our findings corroborate the experimental results obtained by a standard complementary analysis.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Current address: CAMLIN Italy Srl - Strada Budellungo 2, 43123 Parma, Italy.

**

Current address: Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac, 10-12, 08028 Barcelona, Spain.

Current address: Institute for Bioengineering of Catalonia (IBEC), C. Baldiri Reixac, 10-12, 08028 Barcelona, Spain.

References

1. Das, T.K. and Prusty, S.: Review on conducting polymers and their applications. Polym. Plast. Technol. Eng. 51, 1487 (2012).Google Scholar
2. Owens, R.M. and Malliaras, G.G.: Organic Electronics at the Interface with Biology. MRS Bull. 35, 449 (2010).Google Scholar
3. Nambiar, S. and Yeow, J.T.W.: Conductive polymer-based sensors for biomedical applications. Biosens. Bioelectron. 26, 1825 (2011).Google Scholar
4. Cesarino, I., Galesco, H.V., Moraes, F.C., Lanza, M.R.V., and Machado, S.A.S.: Biosensor based on electrocodeposition of carbon nanotubes/polypyrrole/laccase for neurotransmitter detection. Electroanalysis 25, 394 (2013).Google Scholar
5. Tarabella, G., Pezzella, A., Romeo, A., D'Angelo, P., Coppedè, N., Calicchio, M., D'Ischia, M., Mosca, R., and Iannotta, S.: Irreversible evolution of eumelanin redox states detected by an organic electrochemical transistor: en route to bioelectronics and biosensing. J. Mater. Chem. B 1, 3843 (2013).CrossRefGoogle ScholarPubMed
6. Jimison, L.H., Tria, S.A., Khodagholy, D., Gurfinkel, M., Lanzarini, E., Hama, A., Malliaras, G.G., and Owens, R.M.: Measurement of barrier tissue integrity with an organic electrochemical transistor. Adv. Mater. 24, 5919 (2012).Google Scholar
7. Svirskis, D., Travas-Sejdic, J., Rodgers, A., and Garg, S.: Electrochemically controlled drug delivery based on intrinsically conducting polymers. J. Control. Release 146, 6 (2010).Google Scholar
8. Cicoira, F. and Santato, C.: Organic Electronics: Emerging Concepts and Technologies, 1st ed. (Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013), pp. 6989.Google Scholar
9. Svensson, P.-O., Nilsson, D., Forchheimer, R., and Berggren, M.: A sensor circuit using reference-based conductance switching in organic electrochemical transistors. Appl. Phys. Lett. 93, 203301 (2008).Google Scholar
10. Tarabella, G., Balducci, A.G., Coppedè, N., Marasso, S., D'Angelo, P., Barbieri, S., Cocuzza, M., Colombo, P., Sonvico, F., Mosca, R., and Iannotta, S.: Liposome sensing and monitoring by organic electrochemical transistors integrated in microfluidics. Biochim. Biophys. Acta—Gen. Subj. 1830, 4374 (2013).Google Scholar
11. Lin, P., Luo, X., Hsing, I.M., and Yan, F.: Organic electrochemical transistors integrated in flexible microfluidic systems and used for label-free DNA sensing. Adv. Mater. 23, 4035 (2011).Google Scholar
12. He, R.-X., Zhang, M., Tan, F., Leung, P.H.M., Zhao, X.-Z., Chan, H.L.W., Yang, M., and Yan, F.: Detection of bacteria with organic electrochemical transistors. J. Mater. Chem. 22, 22072 (2012).Google Scholar
13. Liao, J., Lin, S., Liu, K., Yang, Y., Zhang, R., Du, W., and Li, X.: Organic electrochemical transistor based biosensor for detecting marine diatoms in seawater medium. Sens. Actuators B, Chem. 203, 677 (2014).CrossRefGoogle Scholar
14. Tarabella, G., D'Angelo, P., Cifarelli, A., Dimonte, A., Romeo, A., Berzina, T., Erokhin, V., and Iannotta, S.: A hybrid living/organic electrochemical transistor based on the Physarum polycephalum cell endowed with both sensing and memristive properties. Chem. Sci. 6, 2859 (2015).Google Scholar
15. Romeo, A., Dimonte, A., Tarabella, G., D'Angelo, P., Erokhin, V., and Iannotta, S.: A bio-inspired memory device based on interfacing Physarum polycephalum with an organic semiconductor. APL Mater. 3, 014909 (2015).CrossRefGoogle Scholar
16. Yao, C., Xie, C., Lin, P., Yan, F., Huang, P., and Hsing, I.M.: Organic electrochemical transistor array for recording transepithelial ion transport of human airway epithelial cells. Adv. Mater. 25, 6575 (2013).CrossRefGoogle ScholarPubMed
17. Lin, P., Yan, F., Yu, J., Chan, H.L.W., and Yang, M.: The application of organic electrochemical transistors in cell-based biosensors. Adv. Mater. 22, 3655 (2010).Google Scholar
18. Romeo, A., Tarabella, G., D'Angelo, P., Caffarra, C., Cretella, D., Alfieri, R., Petronini, P.G., and Iannotta, S.: Drug-induced cellular death dynamics monitored by a highly sensitive organic electrochemical system. Biosens. Bioelectron. 68, 791 (2015).Google Scholar
19. Verbalis, J.G.: Disorders of body water homeostasis. Best Pract. Res. Clin. Endocrinol. Metab. 17, 471 (2003).Google Scholar
20. Kim, H., Seo, J.Y., and Kim, K.H.: Effects of mannitol and dimethylthiourea on Helicobacter pylori-induced IL-8 production in gastric epithelial cells. Pharmacology 59, 201 (1999).Google Scholar
21. Gong Wei, J.G.S., Huang, Q., Li, J., Liu, Z., You, H., and Chen, Y.: Taurine attenuates liver injury by downregulating phosphorylated p38 MAPK of Kupffer cells in rats with severe acute pancreatitis. Inflammation 35, 690 (2012).Google Scholar
22. Neuhofer, W.: Role of NFAT5 in inflammatory disorders associated with osmotic stress. Curr. Genomics 11, 584 (2010).Google Scholar
23. Lee, G.M.: Measurement of volume injected into individual cells by quantitative fluorescence microscopy. J. Cell Sci. 94, 443 (1989).Google Scholar
24. Crowe, W., Altamirano, J., Huerto, L., and Alvarez-Leefmans, F.: Volume changes in single N1E-115 neuroblastoma cells measured with a fluorescent probe. Neuroscience 69, 283 (1995).Google Scholar
25. Kimelberg, H.K., O'Connor, E.R., Sankar, P., and Keese, C.: Methods for determination of cell volume in tissue culture. Can. J. Physiol. Pharmacol. 70(Suppl.), S323 (1992).Google Scholar
26. GUILAK, F.: Volume and surface area measurement of viable chondrocytes in situ using geometric modelling of serial confocal sections. J. Microsc. 173, 245 (1994).Google Scholar
27. Korchev, Y.E., Milovanovic, M., Bashford, C.L., Bennett, D.C., Sviderskaya, E.V., Vodyanoy, I., and Lab, M.J.: Specialized scanning ion-conductance microscope for imaging of living cells. J. Microsc. 188(Pt 1), 17 (1997).CrossRefGoogle ScholarPubMed
28. Hamann, S., Kiilgaard, J.F., Litman, T., Alvarez-Leefmans, F.J., Winther, B.R., and Zeuthen, T.: Measurement of cell volume changes by fluorescence self-quenching. J. Fluoresc. 12, 139 (2002).Google Scholar
29. Curtis, A.S.G.: Cell reactions with biomaterials: the microscopies. Eur. Cells Mater. 1, 59 (2001).Google Scholar
30. Ouyang, S., Xie, Y., Zhu, D., Xu, X., Wang, D., Tan, T., and Fong, H.H.: Photolithographic patterning of PEDOT:PSS with a silver interlayer and its application in organic light emitting diodes. Org. Electron. 15, 1822 (2014).Google Scholar
31. Katsen-Globa, A., Puetz, N., Gepp, M.M., Neubauer, J.C., and Zimmermann, H.: Study of SEM preparation artefacts with correlative microscopy: cell shrinkage of adherent cells by HMDS-drying. Scanning 38, 625 (2016).Google Scholar
32. La Monica, S., Caffarra, C., Saccani, F., Galvani, E., Galetti, M., Fumarola, C., Bonelli, M., Cavazzoni, A., Cretella, D., Sirangelo, R., Gatti, R., Tiseo, M., Ardizzoni, A., Giovannetti, E., Petronini, P.G., and Alfieri, R.R.: Gefitinib inhibits invasive phenotype and epithelial-mesenchymal transition in drug-resistant NSCLC cells with MET amplification. PLoS ONE 8, e78656 (2013).Google Scholar
33. Kiehl, T.R., Shen, D., Khattak, S.F., Jian Li, Z., and Sharfstein, S.T.: Observations of cell size dynamics under osmotic stress. Cytometry A 79 A, 560 (2011).Google Scholar
34. Khodagholy, D., Rivnay, J., Sessolo, M., Gurfinkel, M., Leleux, P., Jimison, L.H., Stavrinidou, E., Herve, T., Sanaur, S., Owens, R.M., and Malliaras, G.G.: High transconductance organic electrochemical transistors. Nat. Commun. 4, 2133 (2013).Google Scholar