Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T07:28:08.821Z Has data issue: false hasContentIssue false

Molecular beam epitaxy growth of nonmagnetic Weyl semimetal LaAlGe thin film

Published online by Cambridge University Press:  30 April 2020

Niraj Bhattarai*
Affiliation:
Department of Physics, The Catholic University of America, Washington, DC20064, USA Vitreous State Laboratory, The Catholic University of America, Washington, DC20064, USA
Andrew W. Forbes
Affiliation:
Department of Physics, The Catholic University of America, Washington, DC20064, USA Vitreous State Laboratory, The Catholic University of America, Washington, DC20064, USA
Rajendra P. Dulal
Affiliation:
Institute for Quantum Physics, Advanced Physics Laboratory, Chapman University, MD20866, USA
Ian L. Pegg
Affiliation:
Department of Physics, The Catholic University of America, Washington, DC20064, USA Vitreous State Laboratory, The Catholic University of America, Washington, DC20064, USA
John Philip
Affiliation:
Department of Physics, The Catholic University of America, Washington, DC20064, USA Vitreous State Laboratory, The Catholic University of America, Washington, DC20064, USA
*
Address all correspondence to Niraj Bhattarai at [email protected]
Get access

Abstract

Here, the authors report a detailed method of growing LaAlGe, a nonmagnetic Weyl semimetal, thin film on silicon(100) substrates by molecular beam epitaxy and their structural and electrical characterizations. About 50-nm-thick LaAlGe films were deposited and annealed for 16 h in situ at a temperature of 793 K. As-grown high-quality films showed uniform surface topography and near ideal stoichiometry with a body-centered tetragonal crystal structure. Temperature-dependent longitudinal resistivity can be understood with dominant interband s–d electron–phonon scattering in the temperature range of 5–40 K. Hall measurements confirmed the semimetallic nature of the films with an electron-dominated charge carrier density of ~7.15 × 1021 cm−3 at 5 K.

Type
Research Letters
Copyright
Copyright © Materials Research Society, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chang, G., Singh, B., Xu, S.Y., Bian, G., Huang, S.M., Hsu, C.H., Belopolski, I., Alidoust, N., Sanchez, D.S., Zheng, H., and Lu, H.: Magnetic and noncentrosymmetric Weyl fermion semimetals in the R AlGe family of compounds (R = rare earth). Phys. Rev. B 97, 041104 (2018).CrossRefGoogle Scholar
Puphal, P., Mielke, C., Kumar, N., Soh, Y., Shang, T., Medarde, M., White, J.S., and Pomjakushina, E.: Bulk single-crystal growth of the theoretically predicted magnetic Weyl semimetals R AlGe (R=Pr, Ce). Phys. Rev. Mater. 3, 024204 (2019).CrossRefGoogle Scholar
Xu, S.Y., Alidoust, N., Chang, G., Lu, H., Singh, B., Belopolski, I., Sanchez, D.S., Zhang, X., Bian, G., Zheng, H., and Husanu, M.A.: Discovery of Lorentz-violating type II Weyl fermions in LaAlGe. Sci. Adv. 3, e1603266 (2017).CrossRefGoogle ScholarPubMed
Meng, B., Wu, H., Qiu, Y., Wang, C., Liu, Y., Xia, Z., Yuan, S., Chang, H., and Tian, Z.: Large anomalous Hall effect in ferromagnetic Weyl semimetal candidate PrAlGe. APL Mater. 7, 051110 (2019).CrossRefGoogle Scholar
Tokura, Y., Kawasaki, M., and Nagaosa, N.: Emergent functions of quantum materials. Nat. Phys. 13, 1056 (2017).CrossRefGoogle Scholar
Huang, S.M., Xu, S.Y., Belopolski, I., Lee, C.C., Chang, G., Wang, B., Alidoust, N., Bian, G., Neupane, M., Zhang, C., and Jia, S.: A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).CrossRefGoogle ScholarPubMed
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A., and Burkett, B.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505 (2019).CrossRefGoogle ScholarPubMed
Soluyanov, A.A., Gresch, D., Wang, Z., Wu, Q., Troyer, M., Dai, X., and Bernevig, B.A.: Type-II Weyl semimetals. Nature 527, 495 (2015).CrossRefGoogle ScholarPubMed
Lv, B.Q., Weng, H.M., Fu, B.B., Wang, X.P., Miao, H., Ma, J., Richard, P., Huang, X.C., Zhao, L.X., Chen, G.F., and Fang, Z.: Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).Google Scholar
Xu, S.Y., Belopolski, I., Alidoust, N., Neupane, M., Bian, G., Zhang, C., Sankar, R., Chang, G., Yuan, Z., Lee, C.C., and Huang, S.M.: Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613 (2015).CrossRefGoogle ScholarPubMed
Wang, J., Lian, B., and Zhang, S.C.: Generation of spin currents by magnetic field in 𝒯-and 𝒫-broken materials. SPIN 9, 1940013 (2019). doi:10.1142/S2010324719400137CrossRefGoogle Scholar
Huang, X., Zhao, L., Long, Y., Wang, P., Chen, D., Yang, Z., Liang, H., Xue, M., Weng, H., Fang, Z., and Dai, X.: Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).Google Scholar
Son, D.T. and Spivak, B.Z.: Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).CrossRefGoogle Scholar
Wan, X., Turner, A.M., Vishwanath, A., and Savrasov, S.Y.: Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).CrossRefGoogle Scholar
Dulal, R.P., Dahal, B.R., Forbes, A., Bhattarai, N., Pegg, I.L., and Philip, J.: Weak localization and small anomalous Hall conductivity in ferromagnetic Weyl semimetal Co2TiGe. Sci. Rep. 9, 3342 (2019).CrossRefGoogle ScholarPubMed
Guloy, A.M. and Corbett, J.D.: Syntheses and structures of lanthanum germanide, LaGe2-x, and lanthanum aluminum germanide, LaAlGe: interrelationships among the alpha-ThSi2, alpha-GdSi2, and LaPtSi structure types. Inorg. Chem. 30, 4789 (1991).CrossRefGoogle Scholar
Hodovanets, H., Eckberg, C.J., Zavalij, P.Y., Kim, H., Lin, W.C., Zic, M., Campbell, D.J., Higgins, J.S., and Paglione, J.: Single-crystal investigation of the proposed type-II Weyl semimetal CeAlGe. Phys. Rev. B 98, 245132 (2018).CrossRefGoogle Scholar
Ohring, M.: Why are thin films different from the bulk? In Proc. SPIE 2114, Laser-Induced Damage in Optical Materials: 1993 (28 July 1994); https://doi.org/10.1117/12.180875.Google Scholar
Momma, K., and Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).CrossRefGoogle Scholar
Forbes, A.W., Dulal, R.P., Bhattarai, N., Pegg, I.L., and Philip, J.: Experimental realization and magnetotransport properties of half-metallic Fe2Si. J. Appl. Phys. 125, 243902 (2019).CrossRefGoogle Scholar
Bhattarai, N., Forbes, A.W., Dulal, R.P., Pegg, I.L., and Philip, J.: Transport characteristics of type II Weyl semimetal MoTe2 thin films grown by chemical vapor deposition. J. Mater. Res. 35, 454 (2020).CrossRefGoogle Scholar
Chen, B., Duan, X., Wang, H., Du, J., Zhou, Y., Xu, C., Zhang, Y., Zhang, L., Wei, M., Xia, Z., and Cao, C.: Large magnetoresistance and superconductivity in α-gallium single crystals. npj Quantum Mater. 3, 40 (2018).CrossRefGoogle Scholar
Ziman, J.M.: Electrons and Phonons, Classics Series (Oxford University Press, Oxford, 2011)Google Scholar
Zhang, X., Xiao, Z., Lei, H., Toda, Y., Matsuishi, S., Kamiya, T., Ueda, S., and Hosono, H.: Two-dimensional transition-metal electride Y2C. Chem. Mater. 26, 6638 (2014).CrossRefGoogle Scholar
Destraz, D., Das, L., Tsirkin, S.S., Xu, Y., Neupert, T., Chang, J., Schilling, A., Grushin, A.G., Kohlbrecher, J., Keller, L., and Puphal, P.: Magnetism and anomalous transport in the Weyl semimetal PrAlGe: possible route to axial gauge fields. npj Quantum Mater. 5, 1 (2020).CrossRefGoogle Scholar
Sun, S., Wang, Q., Guo, P.J., Liu, K., and Lei, H.: Large magnetoresistance in LaBi: origin of field-induced resistivity upturn and plateau in compensated semimetals. New J. Phys. 18, 082002 (2016).CrossRefGoogle Scholar
Tafti, F.F., Gibson, Q.D., Kushwaha, S.K., Haldolaarachchige, N., and Cava, R.J.: Resistivity plateau and extreme magnetoresistance in LaSb. Nat. Phys. 12, 272 (2016).CrossRefGoogle Scholar
Arajs, S., and Colvin, R.V.: Electrical resistivity due to electron-phonon scattering in yttrium and lutetium. J. Less-Common Met. 4, 572 (1962).CrossRefGoogle Scholar
Destraz, D., Ilin, K., Siegel, M., Schilling, A., and Chang, J.: Superconducting fluctuations in a Destrazthin NbN film probed by the Hall effect. Phys. Rev. B 95, 224501 (2017).CrossRefGoogle Scholar
Supplementary material: File

Bhattarai et al. supplementary material

Tables S1-S2

Download Bhattarai et al. supplementary material(File)
File 15.6 KB