Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-30T05:38:18.840Z Has data issue: false hasContentIssue false

MEMS-based dual temperature control measurement method for thermoelectric properties of individual nanowires

Published online by Cambridge University Press:  03 September 2020

Yan Cui*
Affiliation:
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
Yang Yang
Affiliation:
Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
Shuai Liu
Affiliation:
College of Science, Xi'an Shiyou University, Xi'an, Shaanxi710065, China
Sheng Dai
Affiliation:
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
Tie Li
Affiliation:
Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
Yuelin Wang*
Affiliation:
Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
*
Address all correspondence to Yan Cui at [email protected]; Yuelin Wang at [email protected]
Address all correspondence to Yan Cui at [email protected]; Yuelin Wang at [email protected]
Get access

Abstract

The development of thermoelectric measurement technology at nanoscale is a challenging task. Here, a novel MEMS-based dual temperature control (DTC) measurement method for thermoelectric properties of individual nanowires was proposed. Different from conventional thermal bridge testing devices, this DTC thermoelectric testing device can obtain the thermoelectric properties by independently control ambient temperature and temperature difference between two ends of the nanowires through two separate resistance thermometers without auxiliary heating devices. The reliability of the model and the testing accuracy were verified by accurately measuring the thermal conductivity, electrical conductivity, and the absolute value of the Seebeck coefficient of VO2 nanowires.

Type
Research Letters
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard, W.A. III, and Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008).CrossRefGoogle ScholarPubMed
Qiu, L., Zhu, N., Zou, H., Feng, Y., Zhang, X., and Tang, D.: Advances in thermal transport properties at nanoscale in China. Int. J. Heat mass transfer 125, 413 (2018).CrossRefGoogle Scholar
Qureshi, Z.A., Ali, H.M., and Khushnood, S.: Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review. Int. J. Heat mass transfer 127, 838 (2018).CrossRefGoogle Scholar
Rojo, M.M., Calero, O.C., Lopeandia, A.F., Rodriguez-Viejo, J., and Martin-Gonzalez, M.: Review on measurement techniques of transport properties of nanowires. Nanoscale 5, 11526 (2013).CrossRefGoogle ScholarPubMed
Liu, Y., Zhang, M., Ji, A., Yang, F., and Wang, X.: Measuring methods for thermoelectric properties of one-dimensional nanostructural materials. RSC Adv. 6, 48933 (2016).CrossRefGoogle Scholar
Karg, S.F., Troncale, V., Drechsler, U., Mensch, P., Das Kanungo, P., Schmid, H., Schmidt, V., Gignac, L., Riel, H., and Gotsmann, B.: Full thermoelectric characterization of InAs nanowires using MEMS heater/sensors. Nanotechnology 25, 305702 (2014).CrossRefGoogle ScholarPubMed
Tang, H., Wang, X., Xiong, Y., Zhao, Y., Zhang, Y., Zhang, Y., Yang, J., and Xu, D.: Thermoelectric characterization of individual bismuth selenide topological insulator nanoribbons. Nanoscale 7, 6683 (2015).CrossRefGoogle ScholarPubMed
Weathers, A., Bi, K., Pettes, M.T., and Shi, L.: Reexamination of thermal transport measurements of a low-thermal conductance nanowire with a suspended micro-device. Rev. Sci. Instrum. 84, 084903 (2013).CrossRefGoogle ScholarPubMed
Lee, S., Hippalgaonkar, K., Yang, F., Hong, J., Ko, C., Suh, J., Liu, K., Wang, K., Urban, J.J., Zhang, X., Dames, C., Hartnoll, S.A., Delaire, O., and Wu, J.: Anomalously low electronic thermal conductivity in metallic vanadium dioxide. Science 355, 371 (2017).CrossRefGoogle ScholarPubMed
Shi, L., Li, D.Y., Yu, C.H., Jang, W.Y., Kim, D., Yao, Z., Kim, P., and Majumdar, A.: Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Trans. 125, 881 (2003).CrossRefGoogle Scholar
Ono, T., Fan, C.-c., and Esashi, M.: Micro instrumentation for characterizing thermoelectric properties of nanomaterials. J. Micromech. Microeng. 15, 1 (2005).CrossRefGoogle Scholar
Xu, W., Li, J., Zhang, G., Chen, X., Galos, R., Hadim, H., Lu, M., and Shi, Y.: A low-cost MEMS tester for measuring single nanostructure's thermal conductivity. Sensor. Actuat. A Phys. 191, 89 (2013).CrossRefGoogle Scholar
Wingert, M.C., Chen, Z.C., Kwon, S., Xiang, J., and Chen, R.: Ultra-sensitive thermal conductance measurement of one-dimensional nanostructures enhanced by differential bridge. Rev. Sci. Instrum. 83, 024901 (2012).CrossRefGoogle ScholarPubMed
Harris, C.T., Martinez, J.A., Shaner, E.A., Huang, J.Y., Swartzentruber, B.S., Sullivan, J.P., and Chen, G.: Fabrication of a nanostructure thermal property measurement platform. Nanotechnology 22, 275308 (2011).CrossRefGoogle ScholarPubMed
Wang, X., Yang, J., Xiong, Y., Huang, B., Xu, T.T., Li, D., and Xu, D.: Measuring nanowire thermal conductivity at high temperatures. Meas. Sci. Technol. 29, 025001 (2018).CrossRefGoogle Scholar
Hernandez, J.A., Carpena-Nunez, J., Fonseca, L.F., Pettes, M.T., Yacaman, M.J., and Benitez, A.: Thermoelectric properties and thermal tolerance of indium tin oxide nanowires. Nanotechnology 29, 364001 (2018).CrossRefGoogle ScholarPubMed
Zheng, J., Wingert, M.C., Moon, J., and Chen, R.: Simultaneous specific heat and thermal conductivity measurement of individual nanostructures. Semicond. Sci. Tech. 31, 084005 (2016).CrossRefGoogle Scholar
Liu, M., Su, B., Tang, Y., Jiang, X., and Yu, A.: Recent advances in nanostructured vanadium oxides and composites for energy conversion. Adv. Energy Mater. 7, 1700885 (2017).CrossRefGoogle Scholar
Moatti, A., Sachan, R., Prater, J., and Narayan, J.: Control of structural and electrical transitions of VO2 thin films. ACS Appl. Mater. Interfaces 9, 24298 (2017).CrossRefGoogle ScholarPubMed
Brito, W.H., Aguiar, M.C., Haule, K., and Kotliar, G.: Metal-insulator transition in VO2: a DFT + DMFT perspective. Phys. Rev. Lett. 117, 056402 (2016).CrossRefGoogle Scholar
Hwang, I.H., Jin, Z., Park, C.I., and Han, S.W.: The influence of structural disorder and phonon on metal-to-insulator transition of VO2. Sci. Rep. 7, 14802 (2017).CrossRefGoogle Scholar
Chen, L., Xiang, Z., Tinsman, C., Asaba, T., Huang, Q., Zhou, H., and Li, L.: Enhancement of thermal conductivity across the metal-insulator transition in vanadium dioxide. Appl. Phys. Lett. 113, 061902 (2018).CrossRefGoogle Scholar
Supplementary material: File

Cui et al. supplementary material

Cui et al. supplementary material

Download Cui et al. supplementary material(File)
File 526.8 KB