Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T10:42:27.335Z Has data issue: false hasContentIssue false

Magnetoelectric vibrational energy harvester utilizing a phase transitional approach

Published online by Cambridge University Press:  28 November 2018

Margo Staruch*
Affiliation:
U.S. Naval Research Laboratory, Washington, DC 20375, USA
Jin-Hyeong Yoo
Affiliation:
Physical Metallurgy and Fire Protection Branch, Carderock Division, Naval Surface Warfare Center, Bethesda, MD 20817, USA
Nicholas Jones
Affiliation:
Physical Metallurgy and Fire Protection Branch, Carderock Division, Naval Surface Warfare Center, Bethesda, MD 20817, USA
Peter Finkel
Affiliation:
U.S. Naval Research Laboratory, Washington, DC 20375, USA
*
Address all correspondence to Margo Staruch at [email protected]
Get access

Abstract

A broadband magnetoelectric energy harvester, consisting of Fe1−xGax (Galfenol) as the magnetostrictor and a relaxor ferroelectric single crystal as the piezoelectric, has been designed and optimized. Finite element analysis (FEA) has been employed to show that either a linear displacement or a 180° rotation of a magnet is sufficient to achieve maximum stroke from the Galfenol rod, which induces a rhombohedral to orthorhombic phase transition in Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 that produces a large jump in voltage. A rotational design based on a pendulum with an unbalanced mass was fabricated and used to confirm the validity of our FEA model.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Roundy, S. J., Wright, P. K., and Rabaey, J. M.: Energy Scavenging for Wireless Sensor Networks (Springer US, New York, 2004).10.1007/978-1-4615-0485-6Google Scholar
2.Mateu, L. and Moll, F.: In Proceedings of SPIE, edited by Lopez, J. F., Fernandez, F. V., Lopez-Villegas, J. M., and de la Rosa, J. M. (2005), pp. 359373.Google Scholar
3.Caliò, R., Rongala, U., Camboni, D., Milazzo, M., Stefanini, C., de Petris, G., and Oddo, C.: Piezoelectric energy harvesting solutions. Sensors 14, 4755 (2014).Google Scholar
4.Beeby, S. P., Tudor, M. J., and White, N. M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, R175 (2006).10.1088/0957-0233/17/12/R01Google Scholar
5.Tang, L., Yang, Y., and Soh, C. K.: toward broadband vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 21, 1867 (2010).10.1177/1045389X10390249Google Scholar
6.Sharpes, N., Abdelkefi, A., and Priya, S.: Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters. Appl. Phys. Lett. 107, 093901 (2015).10.1063/1.4929844Google Scholar
7.Abdelmoula, H., Sharpes, N., Abdelkefi, A., Lee, H., and Priya, S.: Low-frequency zigzag energy harvesters operating in torsion-dominant mode. Appl. Energy 204, 413 (2017).Google Scholar
8.Erturk, A., Hoffmann, J., and Inman, D. J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94, 254102 (2009).Google Scholar
9.Yang, Jin, Wen, Yumei, Li, Ping, Dai, Xianzhi, and Li, Ming: in 2010 IEEE Sensors (IEEE, 2010), pp. 19051909.10.1109/ICSENS.2010.5690026Google Scholar
10.Finkel, P., Benjamin, K., and Amin, A.: Large strain transduction utilizing phase transition in relaxor-ferroelectric Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. Appl. Phys. Lett. 98, 192902 (2011).10.1063/1.3585088Google Scholar
11.Pérez Moyet, R., Stace, J., Amin, A., Finkel, P., and Rossetti, G. A.: Non-resonant electromechanical energy harvesting using inter-ferroelectric phase transitions. Appl. Phys. Lett. 107, 172901 (2015).10.1063/1.4934591Google Scholar
12.Priya, S., Ryu, J., Park, C.-S., Oliver, J., Choi, J.-J., and Park, D.-S.: Piezoelectric and magnetoelectric thick films for fabricating power sources in wireless sensor nodes. Sensors (Basel) 9, 6362 (2009).10.3390/s90806362Google Scholar
13.Bai, X., Wen, Y., Yang, J., Li, P., Qiu, J., and Zhu, Y.: A magnetoelectric energy harvester with the magnetic coupling to enhance the output performance. J. Appl. Phys. 111, 07A938 (2012).10.1063/1.3677877Google Scholar
14.Dong, S., Zhai, J., Li, J. F., Viehland, D., and Priya, S.: Multimodal system for harvesting magnetic and mechanical energy. Appl. Phys. Lett. 93, 103511 (2008).Google Scholar
15.Finkel, P., Pérez Moyet, R., Wun-Fogle, M., Restorff, J., Kosior, J., Staruch, M., Stace, J., and Amin, A.: Non-resonant magnetoelectric energy harvesting utilizing phase transformation in relaxor ferroelectric single crystals. Actuators 5, 2 (2015).10.3390/act5010002Google Scholar
16.Wun-Fogle, M., Restorff, J. B., Clark, A. E., Dreyer, E., and Summers, E.: Stress annealing of Fe–Ga transduction alloys for operation under tension and compression. J. Appl. Phys. 97, 10M301 (2005).Google Scholar
17.Clark, A., Wun-Fogle, M., Restorff, J. B., and Lograsso, T. A.: Magnetostrictive properties of galfenol alloys under compressive stress. Mater. Trans. 43, 881 (2002).10.2320/matertrans.43.881Google Scholar
18.Mahadevan, A., Evans, P. G., and Dapino, M. J.: Dependence of magnetic susceptibility on stress in textured polycrystalline Fe81.6Ga18.4 and Fe79.1Ga20.9 Galfenol alloys. Appl. Phys. Lett. 96, 012502 (2010).Google Scholar
19.Zhu, D., Beeby, S., Tudor, J., and Harris, N.: Vibration energy harvesting using the Halbach array. Smart Mater. Struct. 21, 075020 (2012).Google Scholar
20.Salauddin, M., Halim, M. A., and Park, J. Y.: A magnetic-spring-based, low-frequency-vibration energy harvester comprising a dual Halbach array. Smart Mater. Struct. 25, 095017 (2016).10.1088/0964-1726/25/9/095017Google Scholar
21.Spreemann, D., Manoli, Y., Folkmer, B., and Mintenbeck, D.: Non-resonant vibration conversion. J. Micromech. Microeng. 16, S169 (2006).10.1088/0960-1317/16/9/S01Google Scholar
22.Bowers, B. J., and Arnold, D. P.: Spherical, rolling magnet generators for passive energy harvesting from human motion. J. Micromech. Microeng. 19, 094008 (2009).10.1088/0960-1317/19/9/094008Google Scholar
23.Moss, S. D., Hart, G. A., Burke, S. K., and Carman, G. P.: Hybrid rotary-translational vibration energy harvester using cycloidal motion as a mechanical amplifier. Appl. Phys. Lett. 104, 033506 (2014).10.1063/1.4861601Google Scholar
24.Finkel, P., Staruch, M., Amin, A., Ahart, M., and Lofland, S. E.: Simultaneous stress and field control of sustainable switching of ferroelectric phases. Sci. Rep. 5, 13770 (2015).Google Scholar