Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T07:42:44.289Z Has data issue: false hasContentIssue false

Lateral retention of water droplets on solid surfaces without gravitational effect

Published online by Cambridge University Press:  05 June 2020

Sirui Tang
Affiliation:
Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX77710, USA
Chun-Wei Yao*
Affiliation:
Department of Mechanical Engineering, Lamar University, Beaumont, TX77710, USA
Rafael Tadmor
Affiliation:
Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX77710, USA Department of Mechanical Engineering, Ben Gurion University of the Negev, Beer Sheva8410501, Israel
Divine Sebastian
Affiliation:
Department of Mechanical Engineering, Lamar University, Beaumont, TX77710, USA
*
Address all correspondence to Chun-Wei Yao at [email protected]
Get access

Abstract

Gravity is commonly considered negligible when the surface tension is dominant; i.e., the Bond number is less than 1. In this paper, however, the authors present a technique in which drops slide over surfaces with zero effective gravity. Our study compared the sliding motion of water drops on hydrophilic and hydrophobic surfaces in scenarios: one in which effective gravity = 1 (1 g) and one in which it = 0 (0 g). The authors found that the lateral retention force was greater under 1 g than it was under 0 g. Also, the results showed that retention forces calculated by Furmidge equation are higher than the measured forces.

Type
Research Letters
Copyright
Copyright © Materials Research Society, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schaerli, Y., Wootton, R.C., Robinson, T., Stein, V., Dunsby, C., Neil, M.A.A., French, P.M.W., DeMello, A.J., Abell, C., and Hollfelder, F.: Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. Anal. Chem. 81, 302306 (2009).CrossRefGoogle ScholarPubMed
Teste, B., Ali-Cherif, A., Viovy, J.L., and Malaquin, L.: A low cost and high throughput magnetic bead-based immuno-agglutination assay in confined droplets. Lab. Chip 13, 23442349 (2013).CrossRefGoogle ScholarPubMed
Casadevall i Solvas, X. and DeMello, A.: Droplet microfluidics: recent developments and future applications. Chem. Commun. 47, 19361942 (2011).CrossRefGoogle ScholarPubMed
Bogojevic, D., Chamberlain, M.D., Barbulovic-Nad, I., and Wheeler, A.R.: A digital microfluidic method for multiplexed cell-based apoptosis assays. Lab. Chip 12, 627634 (2012).CrossRefGoogle ScholarPubMed
Cho, S., Kang, D.-K., Sim, S., Geier, F., Kim, J.-Y., Niu, X., Edel, J.B., Chang, S.-I., Wootton, R.C.R., Elvira, K.S., and DeMello, A.J.: Droplet-based microfluidic platform for high-throughput, multi-parameter screening of photosensitizer activity. Anal. Chem. 85, 88668872 (2013).CrossRefGoogle ScholarPubMed
Brutin, D., Sobac, B., Loquet, B., and Sampol, J.: Pattern formation in drying drops of blood. J. Fluid Mech. 667, 8595 (2011).CrossRefGoogle Scholar
Lim, J.A., Lee, W.H., Lee, H.S., Lee, J.H., Park, Y.D., and Cho, K.: Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet. Adv. Funct. Mater. 18, 229234 (2008).CrossRefGoogle Scholar
Allen, R.F., and Benson, P.R.: Rolling drops on an inclined plane. J. Colloid Interface Sci. 50, 250253 (1975).CrossRefGoogle Scholar
Sakai, M., Song, J.-H., Yoshida, N., Suzuki, S., Kameshima, Y., and Nakajima, A.: Direct observation of internal fluidity in a water droplet during sliding on hydrophobic surfaces. Langmuir 22, 49064909 (2006).CrossRefGoogle Scholar
Sakai, M., Hashimoto, A., Yoshida, N., Suzuki, S., Kameshima, Y., and Nakajima, A.: Image analysis system for evaluating sliding behavior of a liquid droplet on a hydrophobic surface. Rev. Sci. Instrum. 78, 045103 (2007).CrossRefGoogle ScholarPubMed
Suzuki, S., Nakajima, A., Sakai, M., Sakurada, Y., Yoshida, N., Hashimoto, A., Kameshima, Y., and Okada, K.: Slipping and rolling ratio of sliding acceleration for a water droplet sliding on fluoroalkylsilane coatings of different roughness. Chem. Lett. 37, 5859 (2008).CrossRefGoogle Scholar
Sakai, M., Song, J.-H., Yoshida, N., Suzuki, S., Kameshima, Y., and Nakajima, A.: Relationship between sliding acceleration of water droplets and dynamic contact angles on hydrophobic surfaces. Surf. Sci. 600, L204L208 (2006).CrossRefGoogle Scholar
Ren, H., Xu, S., and Wu, S.T.: Effects of gravity on the shape of liquid droplets. Opt. Commun. 283, 32553258 (2010).CrossRefGoogle Scholar
Vafaei, S. and Podowski, M.Z.: Analysis of the relationship between liquid droplet size and contact angle. Adv. Colloid Interface Sci. 113, 133146 (2005).CrossRefGoogle ScholarPubMed
Yang, L.-J., Yao, T.-J., and Tai, Y.-C.: The marching velocity of the capillary meniscus in a microchannel. J. Micromech. Microeng. 14, 220225 (2004).CrossRefGoogle Scholar
Hager, W.H.: Wilfrid Noel Bond and the Bond number. J. Hydraul. Res. 50, 39 (2012).CrossRefGoogle Scholar
Lubarda, V.A. and Talke, K.A.: Analysis of the equilibrium droplet shape based on an ellipsoidal droplet model. Langmuir 27, 1070510713 (2011).CrossRefGoogle Scholar
Shin, D.H., Lee, S.H., Jung, J.-Y., and Yoo, J.Y.: Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces. Microelectron. Eng. 86, 13501353 (2009).CrossRefGoogle Scholar
Ravi Annapragada, S., Murthy, J.Y., and Garimella, S. V.: Droplet retention on an incline. Int. J. Heat Mass Transf. 55 (5–6), 14571465 (2012).CrossRefGoogle Scholar
Tang, S., Bhimavarapu, Y., Gulec, S., Das, R., Liu, J., N'Guessan, H., Whitehead, T., Yao, C.W., and Tadmor, R.: Droplets sliding down a vertical surface under increasing horizontal forces. Langmuir 35, 81918198 (2019).Google Scholar
Yao, C.-W., Tang, S., Sebastian, D., and Tadmor, R.: Sliding of water droplets on micropillar-structured superhydrophobic surfaces. Appl. Surf. Sci. 144493 (2019). doi:10.1016/j.apsusc.2019.144493.Google Scholar
Quéré, D., Azzopardi, M.-J., and Delattre, L.: Drops at rest on a tilted plane. Langmuir 14, 22132216 (1998).CrossRefGoogle Scholar
Pu, G., Ai, J., and Severtson, S.J.: Drop behavior on a thermally-stripped acrylic polymer: influence of surface tension induced wetting ridge formation on retention and running. Langmuir 26, 1269612702 (2010).CrossRefGoogle ScholarPubMed
Daniel, S., Chaudhury, M.K., and Chen, J.C.: Fast drop movements resulting from the phase change on a gradient surface. Science 291, 633636 (2001).CrossRefGoogle ScholarPubMed
Zheng, Y., Bai, H., Huang, Z., Tian, X., Nie, F.Q., Zhao, Y., Zhai, J., and Jiang, L.: Directional water collection on wetted spider silk. Nature 463, 640643 (2010).CrossRefGoogle ScholarPubMed
Wang, W., Timonen, J.V.I., Carlson, A., Drotlef, D.M., Zhang, C.T., Kolle, S., Grinthal, A., Wong, T.S., Hatton, B., Kang, S.H., Kennedy, S., Chi, J., Blough, R.T., Sitti, M., Mahadevan, L., and Aizenberg, J.: Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. Nature 559, 7782 (2018).CrossRefGoogle ScholarPubMed
Tadmor, R., Baksi, A., Gulec, S., Jadhav, S., N'guessan, H.E., Somasi, V., Tadmor, M., Tang, S., Wasnik, P., and Yadav, S.: Defying gravity: Drops that climb up a vertical wall of their own accord. J. Colloid Interface Sci. 562, 608613 (2020).CrossRefGoogle ScholarPubMed
Basu, S., Nandakumar, K., and Masliyah, J.H.: A model for detachment of a partially wetting drop from a solid surface by shear flow. J. Colloid Interface Sci. 190, 253257 (1997).CrossRefGoogle Scholar
Sakai, H. and Fujii, T.: The dependence of the apparent contact angles on gravity. J. Colloid Interface Sci. 210, 152156 (1999).CrossRefGoogle ScholarPubMed
Tadmor, R., Bahadur, P., Leh, A., N'Guessan, H.E., Jaini, R., and Dang, L.: Measurement of lateral adhesion forces at the interface between a liquid drop and a substrate. Phys. Rev. Lett. 103, 266101 (2009).CrossRefGoogle ScholarPubMed
Wasnik, P.S., N'guessan, H.E., and Tadmor, R.: Controlling arbitrary humidity without convection. J. Colloid Interface Sci. 455, 212219 (2015).CrossRefGoogle ScholarPubMed
Furmidge, C.G.L.: Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention. J. Colloid Sci. 17, 309324 (1962).CrossRefGoogle Scholar
Varagnolo, S., Ferraro, D., Fantinel, P., Pierno, M., Mistura, G., Amati, G., Biferale, L., and Sbragaglia, M.: Stick-slip sliding of water drops on chemically heterogeneous surfaces. Phys. Rev. Lett. 111, 066101 (2013).CrossRefGoogle ScholarPubMed
Gao, N., Geyer, F., Pilat, D.W., Wooh, S., Vollmer, D., Butt, H.J., and Berger, R.: How drops start sliding over solid surfaces. Nat. Phys. 14, 191196 (2018).CrossRefGoogle Scholar
Dussan V, E.B. and Chow, R.T.P.: On the ability of drops or bubbles to stick to non horizontal surfaces of solids. J. Fluid Mech. 137, 129 (1983).CrossRefGoogle Scholar
Extrand, C.W. and Gent, A.N.: Retention of liquid drops by solid surfaces. J. Colloid Interface Sci. 138, 431442 (1990).CrossRefGoogle Scholar
Brown, R.A., Orr, F.M., and Scriven, L.E.: Static drop on an inclined plate: Analysis by the finite element method. J. Colloid Interface Sci. 73, 7687 (1980).CrossRefGoogle Scholar
ElSherbini, A.I. and Jacobi, A.M.: Retention forces and contact angles for critical liquid drops on non-horizontal surfaces. J. Colloid Interface Sci. 299, 841849 (2006).CrossRefGoogle ScholarPubMed
Supplementary material: File

Tang et al. supplementary material

Tang et al. supplementary material

Download Tang et al. supplementary material(File)
File 110.1 KB