Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T07:45:41.888Z Has data issue: false hasContentIssue false

Investigation into boron nitride nanoparticle effects on thermal properties of calcium chloride hexahydrate (CaCl2·6H2O) as a phase change material

Published online by Cambridge University Press:  12 October 2018

Nastaran Barhemmati-Rajab
Affiliation:
Department of Mechanical & Energy Engineering, University of North Texas, 3940 North Elm Street, Suite F101, Denton, Texas 76207, USA
Weihuan Zhao*
Affiliation:
Department of Mechanical & Energy Engineering, University of North Texas, 3940 North Elm Street, Suite F101, Denton, Texas 76207, USA
*
Address all correspondence to Weihuan Zhao at [email protected]
Get access

Abstract

This paper presents thermal properties’ characterization of calcium chloride hexahydrate as a phase change material (PCM) combined with boron nitride nanoparticles (BNNPs), leading to efficient thermal management. BNNPs have high-thermal conductivity up to 200 W/m K. Therefore, the thermal conductivity of PCM could be remarkably enhanced by adding BNNPs to improve the heat transfer performance. In this study, 0.5 wt% of BNNPs were dispersed in the molten PCM. It has been found that the BNNPs could enhance the thermal conductivity of PCM by 71.9%, while reduce the latent heat of fusion and specific heat of PCM by 11.1% and 60.9%, respectively.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.AlAbidi, A.A., Mat, S.B., Sopian, K., Sulaiman, M.Y., and Lim, C.H.: The review of thermal energy storage for air conditioning systems. J. Renew. Sustain. Energy Rev. 16, 58025819 (2012).10.1016/j.rser.2012.05.030Google Scholar
2.Osterman, E., Tyagi, V.V., Butala, V., Rahim, N.A., and Stritch, U: Review of PCM based cooling technologies for buildings. J. Energy Build. 49, 3749 (2012).10.1016/j.enbuild.2012.03.022Google Scholar
3.Tyagi, V.V., Buddhi, D., Kothari, R., and Tyagi, S.K.: Phase change material (PCM) based thermal management system for cool energy storage application in building: an experimental study. J. Energy Build. 51, 248254 (2012).10.1016/j.enbuild.2012.05.023Google Scholar
4.Xu, B., Li, P.W., and Chan, C.: Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. J. Appl. Energy. 160, 286307 (2015).10.1016/j.apenergy.2015.09.016Google Scholar
5.Li, X., Zhou, Y., Nian, H., and Ren, X.: Phase change behavior of latent heat storage media based on calcium chloride hexahydrate composites containing strontium chloride hexahydrate and oxidation expandable graphite. J. Appl. Therm. Eng. 102, 124 (2016).10.1016/j.applthermaleng.2015.12.069Google Scholar
6.Tyagi, V.V. and Buddhi, D.: Thermal cycle testing of calcium chloride hexahydrate as a possible PCM for latent heat storage. J. Sol. Energy Mater. Sol. Cells 92, 891899 (2008).10.1016/j.solmat.2008.02.021Google Scholar
7.Gao, D. and Deng, T.. Energy storage: preparations and physicochemical properties of solid liquid Phase change materials for thermal energy storage. Curr. Res. Tech. Dev. 1, 3244 (2013).Google Scholar
8.Medrano, M., Yilmaz, M.O., Nogués, M., Martorell, I., Roca, J., and Cabeza, L.F.: Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. J. Appl. Energy 86, 20472055 (2009).10.1016/j.apenergy.2009.01.014Google Scholar
9.Karaipekli, A. and Sari, A.: Capric–myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage. J. Renewable Energy 33, 25992605 (2008).10.1016/j.renene.2008.02.024Google Scholar
10.Mondal, S.. Phase change materials for smart textiles–an overview. J. Appl. Therm. Eng. 28, 15361550 (2008).10.1016/j.applthermaleng.2007.08.009Google Scholar
11.Mohammed, M.F., Amar, M.K., Siddique, A.K.R., and Said, A.H.: A review on phase change energy storage: materials and applications. J. Energy Convers. Manage. 45, 15971615 (2004).Google Scholar
12.Dincer, I. and Rosen, M.A.: Thermal Energy Storage: Systems and Applications (Wiley, Chichester, England, NY, 2002).Google Scholar
13.Sarı, A., Biçer, A., Karaipekli, A., Alkan, C., and Karadag, A.: Synthesis, thermal energy storage properties and thermal reliability of some fatty acid esters with glycerol as novel solid–liquid PCMs. J. Sol. Energy Mater. Sol. Cells 94, 17111715 (2010).10.1016/j.solmat.2010.05.033Google Scholar
14.Lin, K.P. and Di, H.F.: Performance of a hybrid heating system with thermal storage using shape-stabilized phase-change material plates. J. Appl. Energy 84, 10681077 (2007).Google Scholar
15.Raoux, S. and Wuttig, M.: Phase Change Materials: Science and Applications (Springer, Santa Clara, NY, 2009).10.1007/978-0-387-84874-7Google Scholar
16.Chiu, J., Martin, V., and Setterwall, F.: A review of thermal energy storage systems with salt hydrate phase change materials for comfort cooling. In: 11th International Conference on Thermal Energy Storage, Stockholm, Sweden (2009).Google Scholar
17.Zeng, J.L., Cao, Z., Yang, D.W., Sun, L.X., and Zhang, L.: Thermal conductivity enhancement of Ag nanowires on an organic phase change material, J. Therm. Anal. Calorim. 101, 385389 (2010).10.1007/s10973-009-0472-yGoogle Scholar
18.N'Tsoukpoe, K.E., Rammelberg, H.U., Lele, A.F., Korhammer, K., Watts, B.A., Schmidt, T., and Ruck, W.K.L.: A review on the use of calcium chloride in applied thermal engineering. J. Appl. Therm. Eng. 75, 513531 (2014).10.1016/j.applthermaleng.2014.09.047Google Scholar
19.Duan, Z.J., Zhang, H.Z., Sun, L.X., Cao, Z., Xu, F., Zou, Y.J., Chu, H.L., Qiu, S.J., Xiang, C.L., and Zhou, H.Y.: CaCl2·6H2O/expanded graphite composite as form-stable phase change materials for thermal energy storage. J. Therm. Anal. Calorim. 115, 111117 (2014).10.1007/s10973-013-3311-0Google Scholar
20.Bilen, K., Takgil, F., and Kaygusuz, K.: Thermal energy storage behavior of CaCl2·6H2O during melting and solidification. J. Energy Sources 30, 775787 (2008).Google Scholar
21.Lane, G.A.: Adding strontium chloride or calcium hydroxide to calcium chloride hexahydrate heat storage material. J. Sol. Energy 1, 7375 (1981).10.1016/0038-092X(81)90023-2Google Scholar
22.Paris, J. and Jolly, R.: Calcium chloride hexahydrate fusion-solidification behavior. J. Thermochim. Acta 2, 271278 (1989).10.1016/0040-6031(89)85397-3Google Scholar
23.Liu, D. and Xu, Y.L.. Thermoproperties research on nucleators-CaCl2·6H2O composites under distinctive systems. J. Acta Energ. Sol. Sin. 7, 732738 (2007).Google Scholar
24.Anonymous: Thermal Nanosystems and Nanomaterials, Sebastian Volz, Editor. (2009).Google Scholar
25.Zhang, Z.M.: Nano/Microscale Heat Transfer (McGraw-Hill Nanoscience and Technology Series, New York, 2007).Google Scholar
26.Bunde, A. and Kantelhardt, J.W.: Diffusion and Conduction in Percolation Systems – Theory and Applications, Springer, Berlin, Heidelberg, 2005.Google Scholar
27.Abolghasemi, M., Keshavarz, A., and Ali Mehrabian, M.: Heat transfer enhancement of a thermal storage unit consisting of a phase change material and nano-particles. J. Renewable Sustainable Energy 4, 43124 (2012).10.1063/1.4747824Google Scholar
28.He, Y.M., Wang, Q.Q., Liu, W., and Liu, Y.Sh: Functionalization of boron nitride nanoparticles and their utilization in epoxy composites with enhanced thermal conductivity. J. Phys. Status Solidi. 211, 677684 (2014).10.1002/pssa.201330305Google Scholar
29.Salles, V., Bernard, S., Chiriac, R., and Miele, P.: Structural and thermal properties of boron nitride nanoparticles. J. Eur. Ceram. Soc. 32, 18671871 (2012).10.1016/j.jeurceramsoc.2011.09.002Google Scholar
30.Xiong, C. and Tu, W.: Synthesis of water-dispersible boron nitride nanoparticles. Eur. J. Inorg. Chem. 19, 30103015 (2014).10.1002/ejic.201402150Google Scholar
31.Pakdel, A., Zhi, C., Bando, Y., and Golberg, D.: Low-dimensional boron nitride nanomaterials. J. Mater. Today 15, 256265 (2012).10.1016/S1369-7021(12)70116-5Google Scholar
32.Bernard, S., Salles, V., Foucaud, S., and Miele, P.: Boron nitride nanoparticles: one-step synthesis from single-source preceramic precursors. J. Adv. Sci. Technol. 62, 17 (2010).10.4028/www.scientific.net/AST.62.1Google Scholar
33.Meziani, M.J., Song, W.L., Wang, P., Lu, F., Hou, Z., Anderson, A., Maimaiti, H., and Sun, Y.P.: Boron nitride nanomaterials for thermal management applications. J. Chem. Phys. Chem. 16, 13391346 (2015).10.1002/cphc.201402814Google Scholar
34.Samanta, H., Roy, P.C., and Barman, N.: Modeling of solidification of CCHH (CaCl2·6H2O) in a shell-and-tube PCM based heat storage unit. J. Procedia Eng. 127, 816823 (2015).10.1016/j.proeng.2015.11.417Google Scholar
35.Zhang, Z., Yuan, Y., Alelyani, S., Cao, X., and Phelan, P.E.: Thermophysical properties enhancement of ternary carbonates with carbon materials for high-temperature thermal energy storage. Sol. Energy J. 155, 661669 (2017).10.1016/j.solener.2017.07.010Google Scholar
36.BaCO3 SDS, ScienceLab.com.Google Scholar
37.Zhi, C., Bando, Y., and Golberg, D.: Highly thermo-conductive fluid with boron nitride nanofillers. J. ACS NANO. 5, 65716577 (2011).10.1021/nn201946xGoogle Scholar
39.Shrestha, R., Lee, K.M., Chang, W.S., Kim, D.S., Rhee, G.H., and Choi, T.Y.: Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor. Review of Scientific Instruments. 84, 034901 (2013).10.1063/1.4792841Google Scholar
40.Jeong, J.Y., Lee, K.M., Shrestha, R., Horne, K., Das, S., Choi, W., Kim, M.S., and Choi, T.Y.: Thermal conductivity measurement of few layer graphene film by a micropipette sensor with laser point heating source. Mater. Res. Express 3, 055004 (2016).10.1088/2053-1591/3/5/055004Google Scholar
41.Smith, D.S., Alzina, A., Bourret, J., and Nait-Ali, B.: Thermal conductivity of porous materials. J. Mater. Res. 28, 22602272 (2013).10.1557/jmr.2013.179Google Scholar
42.Prasad, V., Kladias, N., Bandyopadhaya, A., and Tian, Q.: Evaluation of correlations for stagnant thermal conductivity of liquid-saturated porous beds of sphere. Int. J. Heat Transfer. 32, 17931796 (1989).10.1016/0017-9310(89)90061-6Google Scholar
43.Sundén, B. and Yuan, J.: Evaluation of models of the effective thermal conductivity of porous materials relevant to fuel cell electrodes. Int. J. Comp. Meth. Exp. Meas. 1, 440445 (2013).Google Scholar
44.Shahbaz, K., Alnashef, I.M., Lin, R.J.T., Hashim, M.A., Mjalli, F.S., and Farid, M.M.: A novel calcium chloride hexahydrate based deep eutectic solvent as a phase change materials. J. Sol. Energy Mater. Sol. Cells 155, 147154 (2016).10.1016/j.solmat.2016.06.004Google Scholar