Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T05:46:14.389Z Has data issue: false hasContentIssue false

Insensitivity of the extent of surface reduction of ceria on termination: comparison of (001), (110), and (111) faces

Published online by Cambridge University Press:  30 September 2020

Weizi Yuan
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL60208, USA
Sossina M. Haile*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL60208, USA
*
Address all correspondence to Sossina M. Haile at [email protected]
Get access

Abstract

The enhanced reducibility of the surface of ceria relative to the bulk has long been established. Several studies also show that ceria nanoparticles with different facets exhibit different catalytic activities. Despite consensus that the activity is correlated with the surface Ce3+ concentration, experimental measurements of this concentration as a function of termination are lacking. Here, X-ray absorption near-edge spectroscopy (XANES) is used to quantify the Ce3+ concentration in films with (001), (110), and (111) surface terminations under reaction relevant conditions. While an enhanced Ce3+ concentration is found at the surfaces, it is surprisingly insensitive to film orientation.

Type
Research Letters
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Trovarelli, A.: Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. 38, 439520 (1996).CrossRefGoogle Scholar
Yang, Y.S., Mao, Z., Huang, W.J., Liu, L.H., Li, J.L., Li, J.L., and Wu, Q.Z.: Redox enzyme-mimicking activities of CeO2 nanostructures: intrinsic influence of exposed facets. Sci. Rep. 6 no. 35344 (7 pp) (2016).Google ScholarPubMed
Sayle, T.X.T., Parker, S.C., and Catlow, C.R.A.: The role of oxygen vacancies on ceria surfaces in the oxidation of carbon monoxide. Surf. Sci. 316, 329336 (1994).CrossRefGoogle Scholar
Zhao, Z., Uddi, M., Tsvetkov, N., Yildiz, B., and Ghoniem, A.F.: Redox kinetics study of fuel reduced ceria for chemical-looping water splitting. J. Phys. Chem. C 120, 1627116289 (2016).CrossRefGoogle Scholar
Yuan, W., Ma, Q., Liang, Y., Sun, C., Narayanachari, K.V.L.V., Bedzyk, M.J., Takeuchi, I., and Haile, S.M.: Unexpected trends in the enhanced Ce3+ surface concentration in ceria–zirconia catalyst materials. J. Mater. Chem. A 8, 98509858 (2020).CrossRefGoogle Scholar
Mullins, D.R.: The surface chemistry of cerium oxide. Surf. Sci. Rep. 70, 4285 (2015).CrossRefGoogle Scholar
Trovarelli, A. and Llorca, J.: Ceria catalysts at nanoscale: how do crystal shapes shape catalysis? ACS Catal. 7, 47164735 (2017).CrossRefGoogle Scholar
Qiao, Z.A., Wu, Z.L., and Dai, S.: Shape-controlled ceria-based nanostructures for catalysis applications. ChemSusChem 6, 1821-1833 (2013).CrossRefGoogle ScholarPubMed
Zhang, D.S., Du, X.J., Shi, L.Y., and Gao, R.H.: Shape-controlled synthesis and catalytic application of ceria nanomaterials. Dalton Trans. 41, 1445514475 (2012).CrossRefGoogle ScholarPubMed
Sun, C.W., Li, H., and Chen, L.Q.: Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ. Sci. 5, 84758505 (2012).CrossRefGoogle Scholar
Paier, J., Penschke, C., and Sauer, J.: Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. Chem. Rev. 113, 39493985 (2013).CrossRefGoogle Scholar
Nolan, M., Parker, S.C., and Watson, G.W.: The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surf. Sci. 595, 223232 (2005).10.1016/j.susc.2005.08.015CrossRefGoogle Scholar
Liu, Z., Li, X.J., Mayyas, M., Koshy, P., Hart, J.N., and Sorrell, C.C.: Growth mechanism of ceria nanorods by precipitation at room temperature and morphology-dependent photocatalytic performance. CrystEngComm 19, 47664776 (2017).CrossRefGoogle Scholar
Liu, Z., Li, X.J., Mayyas, M., Koshy, P., Hart, J.N., and Sorrell, C.C.: Growth mechanism of ceria nanorods by precipitation at room temperature and morphology-dependent photocatalytic performance (vol 19, pg 4766, 2017). CrystEngComm. 19, 5492-5492 (2017).10.1039/C7CE00922DCrossRefGoogle Scholar
Aneggi, E., Wiater, D., de Leitenburg, C., Llorca, J., and Trovarelli, A.: Shape-dependent activity of ceria in soot combustion. ACS Catal. 4, 172181 (2014).CrossRefGoogle Scholar
Pan, C.S., Zhang, D.S., Shi, L.Y., and Fang, J.H.: Template-free synthesis, controlled conversion, and CO oxidation properties of CeO2 nanorods, nanotubes, nanowires, and nanocubes. Eur. J. Inorg. Chem. 15, 24292436 (2008).CrossRefGoogle Scholar
Wang, Z.L. and Feng, X.D.: Polyhedral shapes of CeO2 nanoparticles. J. Phys. Chem. B 107, 1356313566 (2003).CrossRefGoogle Scholar
Chen, S.L., Cao, T., Gao, Y.X., Li, D., Xiong, F., and Huang, W.X.: Probing surface structures of CeO2, TiO2, and Cu2O nanocrystals with CO and CO2 chemisorption. J. Phys. Chem. C 120, 2147221485 (2016).CrossRefGoogle Scholar
Liu, Z., Li, X.J., Mayyas, M., Koshy, P., Hart, J.N., and Sorrell, C.C.: Planar-dependent oxygen vacancy concentrations in photocatalytic CeO2 nanoparticles. CrystEngComm 20, 204212 (2018).CrossRefGoogle Scholar
Wang, X., Jiang, Z.Y., Zheng, B.J., Xie, Z.X., and Zheng, L.S.: Synthesis and shape-dependent catalytic properties of CeO2 nanocubes and truncated octahedra. CrystEngComm 14, 7579-7582 (2012).Google Scholar
Wu, Z.L., Li, M.J., and Overbury, S.H.: On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes. J. Catal. 285, 6173 (2012).CrossRefGoogle Scholar
Carrettin, S., Concepcion, P., Corma, A., Nieto, J.M.L., and Puntes, V.F.: Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew. Chem. Int. Ed. 43, 2538-2540 (2004).CrossRefGoogle ScholarPubMed
Turner, S., Lazar, S., Freitag, B., Egoavil, R., Verbeeck, J., Put, S., Strauven, Y., and Van Tendeloo, G.: High resolution mapping of surface reduction in ceria nanoparticles. Nanoscale 3, 33853390 (2011).CrossRefGoogle ScholarPubMed
Paidi, V.K., Savereide, L., Childers, D.J., Notestein, J.M., Roberts, C.A., and van Lierop, J.: Predicting NOx catalysis by quantifying Ce3+ from surface and lattice oxygen. ACS Appl. Mater. Interfaces 9, 3067030678 (2017).CrossRefGoogle ScholarPubMed
Wu, Z.L., Li, M.J., Howe, J., Meyer, H.M., and Overbury, S.H.: Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir 26, 1659516606 (2010).CrossRefGoogle ScholarPubMed
Chueh, W.C., Hao, Y., Jung, W., and Haile, S.M.: High electrochemical activity of the oxide phase in model ceria-Pt and ceria-Ni composite anodes. Nat. Mater. 11, 155161 (2012).CrossRefGoogle Scholar
Chueh, W.C. and Haile, S.M.: Electrochemical studies of capacitance in cerium oxide thin films and its relationship to anionic and electronic defect densities. Phys. Chem. Chem. Phys. 11, 81448148 (2009).CrossRefGoogle ScholarPubMed
Panlener, R.J., Blumenthal, R.N., and Garnier, J.E.: A thermodynamic study of nonstoichiometric cerium dioxide. J. Phys. Chem. Solids 36, 12131222 (1975).CrossRefGoogle Scholar
Henderson, G.S., de Groot, F.M.F., and Moulton, B.J.A.: X-ray Absorption Near-Edge Structure (XANES) Spectroscopy Reviews in Mineralogy and Geochemistry 78, 75138 (2014).CrossRefGoogle Scholar
Seifert, H.J., Nerikar, P., and Lukas, H.L.: Thermodynamic assessment of the Ce-O system in solid state from 60 to 67 mol% O. Int. J. Mater. Res. 97, 744752 (2006).Google Scholar
Feng, Z.L.A., El Gabaly, F., Ye, X.F., Shen, Z.X., and Chueh, W.C.: Fast vacancy-mediated oxygen ion incorporation across the ceria-gas electrochemical interface. Nat. Commun. 5 no. 4374 (9 pp) (2014).CrossRefGoogle ScholarPubMed