Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T10:33:41.256Z Has data issue: false hasContentIssue false

Influence of Tantalum on phase stability and mechanical properties of WB2

Published online by Cambridge University Press:  04 February 2019

Christoph Fuger*
Affiliation:
Christian Doppler Laboratory for Application Oriented Coating Development, Institute of Materials Science and Technology, TU Wien, A-1060 Wien, Austria
Vincent Moraes
Affiliation:
Christian Doppler Laboratory for Application Oriented Coating Development, Institute of Materials Science and Technology, TU Wien, A-1060 Wien, Austria
Rainer Hahn
Affiliation:
Christian Doppler Laboratory for Application Oriented Coating Development, Institute of Materials Science and Technology, TU Wien, A-1060 Wien, Austria
Hamid Bolvardi
Affiliation:
Oerlikon Balzers, Oerlikon Surface Solutions AG, FL-9496 Balzers, Liechtenstein
Peter Polcik
Affiliation:
Plansee Composite Materials GmbH, D-86983 Lechbruck am See, Germany
Helmut Riedl
Affiliation:
Christian Doppler Laboratory for Application Oriented Coating Development, Institute of Materials Science and Technology, TU Wien, A-1060 Wien, Austria Institute of Materials Science and Technology, TU Wien, A-1060 Wien, Austria
Paul Heinz Mayrhofer
Affiliation:
Christian Doppler Laboratory for Application Oriented Coating Development, Institute of Materials Science and Technology, TU Wien, A-1060 Wien, Austria Institute of Materials Science and Technology, TU Wien, A-1060 Wien, Austria
*
Address all correspondence to Christoph Fuger at [email protected]
Get access

Abstract

Based on density functional theory, we recently suggested that metastable α-WB2 is a promising candidate combining very high hardness with high toughness. These calculations further suggested that the addition of Tantalum supports the crystallization of α-structured W1−xTaxB2−z, with only minor reduction in toughness. Thus, various Ta containing WB2-based coatings have been synthesized using physical vapor deposition. With increasing Ta content, the hardness increases from ~41 GPa (WB2) to ~45 GPa (W0.74Ta0.26B2). In situ micromechanical cantilever bending tests exhibit fracture toughness KIC values of 3.7 to 3.0 MPa√m for increasing Ta content (single-phased up to 26 at.% Ta).

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.PalDey, S. and Deevi, S.C.: Properties of single layer and gradient (Ti,Al)N coatings. Mater. Sci. Eng. A 361, 18 (2003).Google Scholar
2.Kumar, D.D., Kumar, N., Kalaiselvam, S., Radhika, R., Maximus Rabel, A. and Jayavel, R.: Tribo-mechanical properties of reactive magnetron sputtered transition metal carbide coatings. Tribol. Int. 114, 234244 (2017).Google Scholar
3.Mitterer, C., Waldhauser, W., Beck, U. and Reiners, G.: Structure and properties of decorative rare-earth hexaboride coatings. Surf. Coatings Technol. 86–87, 715721 (1996).Google Scholar
4.Chrzanowska-Giżyńska, J., Denis, P., Hoffman, J., Giżyński, M., Mościcki, T., Garbiec, D., and Szymański, Z.: Tungsten borides layers deposited by a nanosecond laser pulse. Surf. Coatings Technol. 335, 181187 (2018).Google Scholar
5.Nedfors, N., Mockute, A., Palisaitis, J., Persson, P.O.Å., Näslund, L.-Å. and Rosen, J.: Influence of pulse frequency and bias on microstructure and mechanical properties of TiB2 coatings deposited by high power impulse magnetron sputtering. Surf. Coatings Technol. 304, 203210 (2016).Google Scholar
6.Lee, K.W., Chen, Y.-H., Chung, Y.-W. and Keer, L.M.: Hardness, internal stress and thermal stability of TiB2/TiC multilayer coatings synthesized by magnetron sputtering with and without substrate rotation. Surf. Coatings Technol. 177–178, 591596 (2004).Google Scholar
7.Shibuya, M., Kawata, M., Ohyanagi, M. and Munir, Z.A.: Titanium diboride-tungsten diboride solid solutions formed by induction-field-activated combustion synthesis. J. Am. Ceram. Soc. 86, 706710 (2003).Google Scholar
8.Mori, T.: Higher borides. Handb. Phys. Chem. Rare Earths 38, 105173 (2008).Google Scholar
9.Mayrhofer, P.H., Kirnbauer, A., Ertelthaler, P. and Koller, C.M.: High-entropy ceramic thin films; a case study on transition metal diborides. Scr. Mater. 149, 9397 (2018).Google Scholar
10.Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. and Akimitsu, J.: Superconductivity at 39 K in magnesium diboride. Nature 410, 63 (2001).Google Scholar
11.Moraes, V., Riedl, H., Fuger, C., Polcik, P., Bolvardi, H., Holec, D. and Mayrhofer, P.H.: Ab initio inspired design of ternary boride thin films. Sci. Rep. 8, 9288 (2018).Google Scholar
12.Vajeeston, P., Ravindran, P., Ravi, C. and Asokamani, R.: Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides. Phys. Rev. B 63, 45115 (2001).Google Scholar
13.Euchner, H., Mayrhofer, P.H., Riedl, H., Klimashin, F.F., Limbeck, A., Polcik, P. and Kolozsvari, S.: Solid solution hardening of vacancy stabilized TixW1––xB2. Acta Mater. 101, 5561 (2015).Google Scholar
14.Liu, Y.M., Jiang, C.L., Pei, Z.L., Lei, H., Gong, J. and Sun, C.: Microstructure and properties of AlB2-type WB2 thin films deposited by direct-current magnetron sputtering. Surf. Coatings Technol. 245, 108116 (2014).Google Scholar
15.Bartosik, M., Rumeau, C., Hahn, R., Zhang, Z.L. and Mayrhofer, P.H.: Fracture toughness and structural evolution in the TiAlN system upon annealing. Sci. Rep. 7, 19 (2017).Google Scholar
16.Moraes, V., Fuger, C., Paneta, V., Primetzhofer, D., Polcik, P., Bolvardi, H., Arndt, M., Riedl, H. and Mayrhofer, P.H.: Substoichiometry and tantalum dependent thermal stability of α-structured W-Ta-B thin films. Scr. Mater. 155, 510 (2018).Google Scholar
17.Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 17581775 (1999).Google Scholar
18.Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 1116911186 (1996).Google Scholar
19.Perdew, J.P., Burke, K. and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 38653868 (1996).Google Scholar
20.van de Walle, A., Asta, M. and Ceder, G.: The alloy theoretic automated toolkit: a user guide. Calphad 26, 539553 (2002).Google Scholar
21.Janssen, G.C.A.M., Abdalla, M.M., van Keulen, F., Pujada, B.R. and van Venrooy, B.: Celebrating the 100th anniversary of the Stoney equation for film stress: developments from polycrystalline steel strips to single crystal silicon wafers. Thin Solid Films 517, 18581867 (2009).Google Scholar
22.MANN, A.B.: Surfaces and Interfaces for Biomaterials (Woodhead Publishing, 2005), pp. 225247.Google Scholar
23.Bartosik, M., Hahn, R., Zhang, Z.L., Ivanov, I., Arndt, M., Polcik, P. and Mayrhofer, P.H.: Fracture toughness of Ti-Si-N thin films. Int. J. Refract. Met. Hard Mater. 72, 7882 (2018).Google Scholar
24.Matoy, K., Schönherr, H., Detzel, T., Schöberl, T., Pippan, R., Motz, C. and Dehm, G.: A comparative micro-cantilever study of the mechanical behavior of silicon based passivation films. Thin Solid Films 518, 247256 (2009).Google Scholar
25.Powder Diffraction File 04-003-6624, International Center for Diffraction Data 2011.Google Scholar
26.Powder Diffraction File 00-038-1462, International Center for Diffraction Data 2011.Google Scholar
27.Powder Diffraction File 00-035-0815, International Center for Diffraction Data 2011.Google Scholar
28.Hahn, R., Bartosik, M., Arndt, M., Polcik, P. and Mayrhofer, P.H.: Annealing effect on the fracture toughness of CrN/TiN superlattices. Int. J. Refract. Met. Hard Mater. 71, 352356 (2018).Google Scholar
29.Hahn, R., Bartosik, M., Soler, R., Kirchlechner, C., Dehm, G. and Mayrhofer, P.H.: Superlattice effect for enhanced fracture toughness of hard coatings. Scr. Mater. 124, 6770 (2016).Google Scholar
30.Wang, C., Shi, K., Gross, C., Pureza, J.M., de Mesquita Lacerda, M. and Chung, Y.-W.: Toughness enhancement of nanostructured hard coatings: design strategies and toughness measurement techniques. Surf. Coatings Technol. 257, 206212 (2014).Google Scholar