Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T07:41:43.906Z Has data issue: false hasContentIssue false

Increased piezoelectric response in functional nanocomposites through multiwall carbon nanotube interface and fused-deposition modeling three-dimensional printing

Published online by Cambridge University Press:  08 November 2017

Hoejin Kim*
Affiliation:
The University of Texas at El Paso 500W, University Ave, El Paso, Texas 79968, USA
Fernando Torres
Affiliation:
The University of Texas at El Paso 500W, University Ave, El Paso, Texas 79968, USA
Md Tariqul Islam
Affiliation:
The University of Texas at El Paso 500W, University Ave, El Paso, Texas 79968, USA
Md Didarul Islam
Affiliation:
The University of Texas at El Paso 500W, University Ave, El Paso, Texas 79968, USA
Luis A. Chavez
Affiliation:
The University of Texas at El Paso 500W, University Ave, El Paso, Texas 79968, USA
Carlos A. Garcia Rosales
Affiliation:
The University of Texas at El Paso 500W, University Ave, El Paso, Texas 79968, USA
Bethany R. Wilburn
Affiliation:
The University of Texas at El Paso 500W, University Ave, El Paso, Texas 79968, USA
Calvin M. Stewart
Affiliation:
The University of Texas at El Paso 500W, University Ave, El Paso, Texas 79968, USA
Juan C. Noveron
Affiliation:
The University of Texas at El Paso 500W, University Ave, El Paso, Texas 79968, USA
Tzu-Liang B. Tseng
Affiliation:
The University of Texas at El Paso 500W, University Ave, El Paso, Texas 79968, USA
Yirong Lin
Affiliation:
The University of Texas at El Paso 500W, University Ave, El Paso, Texas 79968, USA
*
Address all correspondence to Hoejin Kim at [email protected]
Get access

Abstract

Multiwall carbon nanotubes (MWCNTs) are utilized to resolve low coupling coefficient issue by dispersing MWCNTs in poly(vinylidene fluoride) matrix to create stress reinforcing network, dispersant, and electron conducting functions for barium titanate (BT) nanoparticles. Various BT and MWCNT percentages of nanocomposite film are fabricated by FDM three-dimensional (3D) printing which can simplify the fabrication process as well as lower cost and design flexibility. Increasing MWCNTs and BT particles gradually increase piezoelectric coefficient (d 31) by 0.13 pC/N with 0.4 wt%-MWCNTs/18 wt%-BT. These results provide not only a technique to print piezoelectric nanocomposites but also unique materials combination for sensor application.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sebastian, M.T. and Jantunen, H.: Polymer–ceramic composites of 0–3 connectivity for circuits in electronics: a review. Int. J. Appl. Ceram. Technol. 7, 415434 (2010).Google Scholar
2. Xu, W., Yang, H., Zeng, W., Houghton, T., Wang, X., Murthy, R., Kim, H., Lin, Y., Mignolet, M., Duan, H., Yu, H., Slepian, M., and Jiang, H.: Food-based edible and nutritive electronics. Adv. Mater. Technol. (2017). doi: 10.1002/admt.201700181.Google Scholar
3. Salimi, A. and Yousefi, A.: Conformational changes and phase transformation mechanisms in PVDF solution-cast films. J. Polym. Sci. B: Polym. Phys. 42, 34873495 (2004).CrossRefGoogle Scholar
4. Kim, H., Shuvo, M.A.I., Karim, H., Nandasiri, M.I., Schwarz, A.M., Vijayakumar, M., Noveron, J.C., Tseng, T.-L., and Lin, Y.: Porous carbon/CeO2 nanoparticles hybrid material for high-capacity super-capacitors. MRS Adv. 2, 24712480 (2017).CrossRefGoogle Scholar
5. Kim, H., Shuvo, M.A.I., Karim, H., Noveron, J.C., Tseng, T.-L., and Lin, Y.: Synthesis and characterization of CeO2 nanoparticles on porous carbon for Li-ion battery. MRS Adv. 2, 32993307 (2017).Google Scholar
6. Jiang, Y., Ye, Y., Yu, J., Wu, Z., Li, W., Xu, J., and Xie, G.: Study of thermally poled and corona charged poly (vinylidene fluoride) films. Polym. Eng. Sci. 47, 13441350 (2007).CrossRefGoogle Scholar
7. Kim, H., Torres, F., Wu, Y., Villagran, D., Lin, Y., and Tseng, T.-L.B.: Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application. Smart Mater. Struct. 26, 085027 (2017).CrossRefGoogle Scholar
8. Kim, H., Fernando, T., Li, M., Lin, Y., and Tseng, T.-L.B.: Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. J. Compos. Mater. (2017). doi: 10.1177/0021998317704709.Google Scholar
9. Kim, H., Torres, F., Villagran, D., Stewart, C., Lin, Y., and Tseng, T.L.B.: 3D printing of BaTiO3/PVDF composites with electric in situ poling for pressure sensor applications. Macrom. Mater. Eng. (2017). doi: 10.1002/mame.201700229.Google Scholar
10. Ahn, Y., Lim, J.Y., Hong, S.M., Lee, J., Ha, J., Choi, H.J., and Seo, Y.: Enhanced piezoelectric properties of electrospun poly (vinylidene fluoride)/multiwalled carbon nanotube composites due to high β-phase formation in poly (vinylidene fluoride). J. Phys. Chem. C 117, 1179111799 (2013).Google Scholar
11. Park, K.I., Lee, M., Liu, Y., Moon, S., Hwang, G.T., Zhu, G., Kim, J.E., Kim, S.O., Kim, D.K., and Wang, Z.L.: Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv. Mater. 24, 29993004 (2012).CrossRefGoogle ScholarPubMed
12. Kim, K., Zhu, W., Qu, X., Aaronson, C., McCall, W.R., Chen, S., and Sirbuly, D.J.: 3D optical printing of piezoelectric nanoparticle–polymer composite materials. ACS Nano 8, 97999806 (2014).Google Scholar
13. Lee, C. and Tarbutton, J.A.: Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications. Smart. Mater. Struct. 23, 095044 (2014).CrossRefGoogle Scholar
14. Shen, M.-Y., Chang, T.-Y., Hsieh, T.-H., Li, Y.-L., Chiang, C.-L., Yang, H., and Yip, M.-C.: Mechanical properties and tensile fatigue of graphene nanoplatelets reinforced polymer nanocomposites. J. Nanomed. 2013, 1 (2013).Google Scholar
15. Mandal, A. and Nandi, A.K.: Ionic liquid integrated multiwalled carbon nanotube in a poly (vinylidene fluoride) matrix: formation of a piezoelectric β-polymorph with significant reinforcement and conductivity improvement. ACS Appl. Mater. Interface 5, 747760 (2013).Google Scholar
16. Nagata, K. and Kiyota, T.: Piezoelectric properties of low coercive-field BaTiO3 Ceramics and its application. Japan J. Appl. Phys. 28, 98 (1989).Google Scholar
17. Cai, X., Lei, T., Sun, D., and Lin, L.: A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC Adv. 7, 1538215389 (2017).Google Scholar
18. Mandal, D., Henkel, K., and Schmeißer, D.: The electroactive β-phase formation in poly (vinylidene fluoride) by gold nanoparticles doping. Mater. Lett. 73, 123125 (2012).Google Scholar
19. Matsushige, K., Nagata, K., Imada, S., and Takemura, T.: The II-I crystal transformation of poly (vinylidene fluoride) under tensile and compressional stresses. Polymer 21, 13911397 (1980).CrossRefGoogle Scholar
20. Karaki, T., Yan, K., Miyamoto, T., and Adachi, M.: Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder. Japan. J. Appl. Phys. 46, L97 (2007).Google Scholar
21. Dong, L., Stone, D.S., and Lakes, R.S.: Enhanced dielectric and piezoelectric properties of x BaZrO3-(1−x) BaTiO3 ceramics. J. Appl. Phys. 111, 084107 (2012).Google Scholar
Supplementary material: File

Kim et al supplementary material

Kim et al supplementary material 1

Download Kim et al supplementary material(File)
File 5.6 MB