Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T17:28:33.599Z Has data issue: false hasContentIssue false

High-capacity potato peel-shaped graphite for lithium-ion batteries

Published online by Cambridge University Press:  05 September 2011

T. Sri Devi Kumari
Affiliation:
Functional Materials Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamil Nadu, India
R. Surya
Affiliation:
Electrochemical Power Systems Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamil Nadu, India
A. Manuel Stephan
Affiliation:
Electrochemical Power Systems Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamil Nadu, India
D. Jeyakumar
Affiliation:
Functional Materials Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamil Nadu, India
T. Prem Kumar*
Affiliation:
Electrochemical Power Systems Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamil Nadu, India
*
Address all correspondence to T. Prem Kumar at[email protected]
Get access

Abstract

Highly graphitic carbons are obtained by precipitating carbon from molten steel inoculated with bismuth. Scanning electron microscopy images show that the products have a potato peel morphology. The inoculant leads to a breaking of the local symmetry of the graphitic structure as evidenced by Raman spectroscopic studies. The products exhibit flat charge–discharge profiles below about 200 mV versus Li+/Li, reversible capacities even exceeding the theoretical limit of 372 mAh/g for perfectly graphitic structures, low first-cycle irreversible capacities, and sustained hundreds of cycles.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Zheng, T., Xue, J.S., and Dahn, J.R.: Lithium insertion in hydrogen-containing carbonaceous materials. Chem. Mater. 8, 389 (1996).CrossRefGoogle Scholar
2.Yata, S., Hato, Y., Kinoshita, H., Ando, N., Anekawa, A., Hashimoto, T., Yamaguchi, M., Tanaka, K., and Yamabe, T.: Characteristics of deeply Li-doped polyacenic semiconductor material and fabrication of a Li secondary battery. Synth. Met. 73, 273 (1995).CrossRefGoogle Scholar
3.Kasuh, T., Mabuchi, A., Tokumitsu, K., and Fujimoto, H.: Recent trends in carbon negative electrode materials. J. Power Sources 68, 99 (1997).CrossRefGoogle Scholar
4.Natarajan, C., Fujimoto, H., Mabuchi, A., Tokumitsu, K., and Kasuh, T.: Effect of mechanical milling of graphite powder on lithium intercalation properties. J. Power Sources 92, 187 (2001).CrossRefGoogle Scholar
5.Deng, D. and Lee, J.Y.: One-step synthesis of polycrystalline carbon nanofibers with periodic dome-shaped interiors and their reversible lithium-ion storage properties. Chem. Mater. 19, 4198 (2007).CrossRefGoogle Scholar
6.Wang, Z.X., Wei, X.D., Zhao, T.K., and Liu, Y.N.: Amorphous carbon nanotubes as new anode material for lithium ion batteries. Chin. J. Mater. Res. 22, 312 (2008).Google Scholar
7.Subramanian, V., Zhu, H.W., and Wei, B.Q.: High rate reversibility anode materials of lithium batteries from vapor-grown carbon nanofibers. J. Phys. Chem. B110, 7178 (2006).Google Scholar
8.Lee, Y.H., Pan, K.C., Lin, Y.Y., Subramanian, V., Prem Kumar, T., and Fey, G.T.K.: Graphite with fullerene and filamentous carbon structures formed from iron melt as a lithium-intercalating anode. Mater. Lett. 57, 1113 (2003).CrossRefGoogle Scholar
9.Lee, Y.H., Pan, K.C., Lin, Y.Y., Prem Kumar, T., and Fey, G.T.K.: Lithium intercalation in graphites precipitated from pig iron melts. Mater. Chem. Phys. 82, 750 (2003).CrossRefGoogle Scholar
10.Pan, D., Wang, S., Zhao, B., Wu, M., Zhang, H., Wang, Y., and Jiao, Z.: Li storage properties of disordered graphene nanosheets. Chem. Mater. 21, 3136 (2009).CrossRefGoogle Scholar
11.Morrogh, H. and Williams, W.: Graphite formation in cast irons and in nickel–carbon and cobalt–carbon alloys. J. Iron Steel Inst. 155, 321 (1941).Google Scholar
12.Wang, W., Thomas, K.M., Poultney, R.M., and Willmers, R.R.: Iron catalysed graphitisation in the blast furnace. Carbon 33, 1525 (1995).CrossRefGoogle Scholar
13.Double, D.D. and Hellawell, A.: The nucleation and growth of graphite—the modification of cast iron. Acta Metall. Mater. 43, 2435 (1995).CrossRefGoogle Scholar
14.Ugarte, D.: Formation mechanism of quasi-spherical particles induced by electron bombardment. Phys. Lett. 207, 473 (1993).Google Scholar
15.Besenhard, J.O. and Fritz, H.P.: The electrochemistry of black carbons. Angew. Chem. Int. Ed. Engl. 95, 950 (1983).Google Scholar
16.Lee, Y.H., Chang, Y.C., Pan, K.C., and Chang, S.T.: The accidental discovery of nature derivative fullerenes developed from DPG. Mater. Chem. Phys. 72, 232 (2001).CrossRefGoogle Scholar
17.Chang, Y.C., Sohn, H.J., Ku, C.H., Wang, Y.G., Korai, Y., and Mochida, I.: Anodic performances of mesocarbon microbeads (MCMB) prepared from synthetic naphthalene isotropic pitch. Carbon 37, 1285 (1999).CrossRefGoogle Scholar